
Nitric oxide is synthesized in the lungs
to help regulate blood flow, and its
levels have been found to drop in

species native to low altitudes, including
humans, upon acute exposure to reduced
oxygen concentration1–3. But we show here
that exhalation of nitric oxide by chronical-
ly hypoxic populations of Tibetans living at
4,200 m and of Bolivian Aymara at 3,900 m
is unexpectedly increased compared with a
low-altitude reference sample from the
United States. This consistent response in
two far-removed, high-altitude locales indi-
cates that increasing the concentration of
nitric oxide in the lungs may represent a
means of offsetting hypoxia.

We measured the geometric mean con-
centration of nitric oxide (NO) exhaled by
individuals in a group of healthy non-smok-
ers from Tibet (Fig. 1) as 18.6 p.p.b. (n4105;
range, 5.5–55.7 p.p.b.; coefficient of variation
(c.v.), 1.5%) — more than twice the value
for the low-altitude reference sample (7.4
p.p.b.; n433; range, 4.5–14.6; c.v., 2.4%).
The geometric mean NO concentration
exhaled by the Aymara was 9.5 p.p.b.
(n4144; range, 2.7–30.3; c.v., 1.9%) — over
25% greater than that for the low-altitude
reference (Fig. 2). Artificial relief from
hypoxia (inspiration of oxygen at 42–50%
v/v concentration) resulted in an increase of
2.5 p.p.b. in NO exhaled by Tibetans (n426,
P*0.05), but caused no change among the
Aymara (n425, P¤0.05), suggesting that
the mechanism for sustaining high NO levels
may differ between the two populations.

Measurements of NO exhaled at the
mouth reflect accurately and qualitatively the
dynamics of NO production and consump-
tion in the lungs1. Reduced consumption is
unlikely to explain the higher NO values of
high-altitude natives, because haemoglobin
rapidly scavenges NO and both samples
showed high haemoglobin concentrations
compared with those taken from sea-level
dwellers (see supplementary information).

Reduced consumption is also unlikely to
explain the higher NO levels found in
Tibetans compared with the Aymara. 

Controlling for the significantly higher
haemoglobin concentrations in Aymara
samples by comparing subsamples with the
same range of haemoglobin (153–158 g l11)
revealed mean NO concentrations of 19.9
p.p.b. and 8.8 p.p.b. for the 16 Tibetans and
the 25 Aymara, respectively. NO levels did
not correlate with haemoglobin concentra-
tion or resting oxygen saturation in either
sample. An increase in NO synthesis is
therefore a more likely explanation for 
the high NO concentrations in these two 
samples (such an increase would therefore
be smaller in the Aymara). 

Nitric oxide is synthesized by NO-
synthase enzymes and its synthesis depends
on the availability of molecular oxygen1,4,5,
so a drop in oxygen concentration would be
expected to result in reduced NO produc-
tion by synthases. Possible adaptations to
maintain high-output NO synthesis under
hypoxia include variant forms of the

enzyme that show altered kinetics for 
oxygen dependence, modification of co-
factor availability through post-translation-
al effects, and/or increased expression of the
synthase enzymes themselves. 

To assess the potential benefits of
increased levels of endogenous NO to 
high-altitude populations, we investigated
whether increasing NO at sea level
improves oxygen uptake by the lungs and
thereby offsets hypoxia. Oxygen uptake
improved in a dose-dependent manner
(P*0.05) in the presence of exogenous NO
at concentrations of 1.3–31,600 p.p.b. 
during hypoxic ventilation (10.4% oxygen;
measured by the progressive reduction in
oxygen concentration at the end of a 10-s
exhalation, when values reflect exhalate
concentration from the alveoli where gas
exchange occurs). End-exhalation oxygen
concentration decreased from 8.5% to 
7.8% as exogenous NO concentration was
increased; over 70% of the effect on oxygen
uptake occurred in the physiological range
at 290 p.p.b NO. An unchanged end-
exhalation CO2 measurement confirmed
that increased oxygen uptake was not due to
a momentary increase in oxygen consump-
tion or to metabolic demands. 

The human model of high-altitude adap-
tation should also incorporate a functional,
adaptive benefit of high NO levels in the
lungs. NO produced in the lungs dilates pul-
monary blood vessels, increases pulmonary
blood flow and reduces pulmonary hyper-
tension. By reacting with haemoglobin in
red blood cells, NO increases haemoglobin
oxygenation and may improve the delivery
of oxygen to tissues by enhancing systemic
vasodilation and blood flow6.
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Pulmonary nitric oxide in mountain dwellers
Populations living at high altitudes have an adaptive mechanism to offset hypoxia.

Figure 2 A Tibetan population living at 4,200 m, a Bolivian Aymara population at 3,900 m and a low-altitude population in the United

States differ significantly in their mean concentrations of exhaled nitric oxide (NO; ANOVA, F477.9, d.f.42, P*0.05); no sex or age

differences are evident in the results. Details of methods are available from the authors.

60

50

40

30

20

10

0

60

50

40

30

20

10

0

60

50

40

30

20

10

0
0 20 40 60 0 20 40 60 80 10 20 30 40 50

E
xh

al
ed

 N
O

 (p
.p

.b
.)

Age (yr)

Tibetans Bolivian Aymara Low altitude

Male

Female

Figure 1 The high altitude at which Tibetans live means that they are constantly exposed to reduced atmospheric oxygen concentrations.
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mice outlive CR normal mice (P*0.0001). 
The survival plots (Fig. 1) reveal a further

disparity: although both dwarfism and calo-
rie restriction extend longevity, the effect of
reduced food intake is associated primarily
with a change in the slope of the survival
curve (that is, it reduces the rate of age-relat-
ed mortality), whereas the effect of dwarfism
mainly reflects a shift in the age at which the
age-dependent increase in mortality risk first
becomes appreciable. Calorie restriction
therefore seems to decelerate ageing, where-
as the Prop1df allele seems to delay it. 

Our results indicate that long-lived
Ames dwarf mice are not merely mimics of
CR mice, and show that the pathways
responsible for extending lifespan in the
dwarfs and in CR animals are not identical.
However, features that are shared by CR
normal mice and Ames dwarf mice, and 
by long-lived knockout mice that lack 
the growth-hormone receptor7, include
reduced body size and lower plasma levels
of insulin, the insulin-like growth factor
IGF-1, glucose and thyroid hormone. These
factors may contribute to delayed ageing
and increased longevity in each of these
animal models. 

For example, the IGF/insulin or a similar
signalling pathway is involved in lifespan
determination in the fruitfly Drosophila
melanogaster 8,9, the roundworm Caenorhab-
ditis elegans 10, and yeast11. This supports the
idea that hormonal regulation of meta-
bolic pathways in response to altered food 
availability may be a way of regulating 
lifespan that is deeply rooted in evolu-
tionary history.
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Several distinctive features of Tibetan
and Andean high-altitude natives are relat-
ed to their increased vasodilation and blood
flow compared with acclimatized low-
landers. For example, Tibetans are better
than Han Chinese at increasing their 
cerebral blood flow during exercise7, as well
as their utero–placental blood flow8; the
Andean Aymara show a large capacity for
pulmonary diffusion9 and the Andean
Quechua have better circulation to cold
extremities than Europeans10; and Tibetan
and Andean natives show higher oxygen
saturation during exercise than do acclima-
tized Han Chinese and Europeans11,12. 

The similar responses of these two 
geographically separate high-altitude popu-
lations underlines the importance of NO
for life under hypoxic stress. The functional
advantage of high NO concentrations in the
lungs seems to be to offset ambient hypoxia
by enhancing the uptake of oxygen from the
lungs, which presumably improves delivery
of oxygen to peripheral tissues. 
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age, the amount of food given to CR animals
was kept constant after the age of 2 years. 

The survival curves shown in Fig. 1
indicate that calorie restriction causes a 
further significant increase in the longevity
of Ames dwarf mice. When males and
females are considered together, the differ-
ence between the CR and AL groups of
Ames dwarf mice is significant (P*0.004,
log rank test). The effect of calorie restric-
tion on lifespan in Ames dwarf mice is also
significant (P*0.05) when genders are
considered separately. As expected, calorie
restriction also extends the lifespan of 
normal mice (P*0.002), although AL
Ames dwarf mice outlive AL normal mice
(P*0.00001). Moreover, CR Ames dwarf

Longevity

Extending the lifespan of
long-lived mice

Ames dwarf mice are mutant mice that
live about 50% longer than their 
normal siblings1–3 because they carry 

a ‘longevity’ gene, Prop1df, and in some 
phenotypic respects they resemble normal
mice whose lifespan has been extended 
by restricted food intake2,4,5. Here we inves-
tigate whether these factors influence 
lifespan by similar or independent mecha-
nisms, by deliberately reducing the number
of calories consumed by Ames dwarf mice.
We show that calorie restriction confers a
further lifespan increase in the dwarfs, 
indicating that the two factors may act
through different pathways. 

To investigate the effects of calorie
restriction on the already extended lifespan
of Ames dwarf mice, we divided 45 
2-month-old Ames dwarf mice and 53 
of their normal siblings into two groups,
which were subjected either to calorie
restriction (CR) or to continued feeding ad
libitum (AL). We fed CR mice daily, 
reducing their food intake in successive
weeks to 90%, 80% and finally 70% of that
consumed daily by genotype- and sex-
matched AL animals6. Because the food con-
sumption of AL mice declines naturally with

Figure 1 Survival plots of Ames dwarf (DF) and normal (wild-type,

WT) mice fed ad libitum (AL) or restricted to 70% of normal calo-

rie intake (calorie restriction, CR).
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