James Swain, PhD, RD, LD

 Associate Professor  and  Director DPD

 
RESEARCH INTERESTS


SELECTED PUBLICATIONS (below)
 
all PUBLICATIONS via PubMed


Background

James received his Ph.D. in Human Nutrition from Iowa State University. Following his extensive work on iron binding proteins, Dr. Swain conducted research on the efficacy of novel iron fortificants at a U.S. Department of Agriculture, Agricultural Research Service center in Grand Forks, North Dakota.

Dr. Swain is also a registered, licensed dietitian and has clinical experience in many areas of patient care. His primary interests are in the areas of oncology nutrition and anemia.

He joined the Nutrition faculty at Case Western Reserve University as Assistant Professor in August 2003. In addition to his teaching and research activities, he is director of the Nutrition Departments nationally accredited (CADE) Didactic Program in Dietetics (DPD).  James is also a student mentor and advisor. He teaches undergraduate and graduate nutrition and dietetics courses, including food science and medical nutrition therapy.

He conducts research in the area of iron absorption and the influence of dietary iron on intestinal cancer. He is a program reviewer with CADE, is the current Chair of the Vitamins and Minerals Research Interest Section of the American Society for Nutrition, and a Ohio State Representative for the Oncology Nutrition Dietetic Practice Group.


Education

2001- 2003   Post-Doctoral Fellow
                       USDA Human Nutrition Research Center

2000              Ph.D.  |  Major: Nutrition
                       Iowa State University
2000              Dietetic Internship
                       Clinical Rotation Mercy Hospital  (Des Moines, IA)

1996              M.S.  |   Major:  Human Nutrition
                       California State University (Northridge)
1993              B.A.  |   Major:  Biological Sciences
                      
University of California (Santa Barbara)


AREAS of RESEARCH INTERESTS

    My research expertise and focus is in the area of iron absorption and metabolism. My research also focuses on understanding the influence of dietary iron on intestinal tumorigenesis, using immunohistochemistry, proteomics, and gene expression analysis.

    ONGOING RESEARCH in Dr. SWAIN's LABORATORY:
    Recently, a study was conducted to determine the effect of excess dietary iron on intestinal tumorigenesis using histological and proteomic analyses of tumor and normal intestinal tissue in Apc1638N mice fed different concentrations of dietary iron.

    Six weanlings were fed adequate (n=6) and six weanlings were fed excess (n=6) amounts of iron (ferrous sulfate: 45 vs. 450 mg iron/kg AIN-93M[M] diet).  After 24 wk, mice were sacrificed and intestines removed. Portions of the small intestine and both the proximal and distal colon were subjected to histological analyses.

    Tumors and adjacent normal (non-tumor) intestinal tissue were excised for proteomic analysis and network/pathway analyses to relate histological findings to inflammatory regulators. Findings reveal that excess dietary iron stimulates polyp (tumor) growth, induces significant differences in the proteome of tumor cells, and modulates the activity of antioxidant enzymes, such as glutathione-S-transferase, in intestinal tumors, possibly in response to the pro-oxidative, pro-inflammatory effects of excess intraluminal iron.

    RESULTS:
    Weight gain of mice did not differ (p<0.05) between the groups. Food intake also did not significantly differ (p<0.05) between the treatment groups throughout the study.


    Figure 1.  Intestinal segment -stained with methylene blue- showing
    tumor and normal (non-tumor) tissue.  Diameter grid measurements
    overlay each tumor.

     

    Figure 2.
    Figure 2.
      No significant difference was seen in polyp number in the colon. However, there was a significant difference in mean size of tumors. Thus, tumor “burden” or total area of coverage by polyps was approximately 2-fold greater in mice fed the high iron diet vs. controls.

     

    Proteins extracted from tumor and non-tumor tissue samples were labeled with fluorescence dye, cy3 and cy5. Those two labeled samples were then mixed with an internal control generated by pooling all samples and labeling with fluorescence dye, cy2. In addition, all samples were reversely labeled to eliminate dye bias. All mixed samples were separated by isoelectric point in pH 3-10 gradient IPG strip and then by molecular weight in 12.5% homogeneous SDS-PAGE gel. Image analysis was performed using DeCyder software and average values for same sample were taken for differential analysis. One way anova followed by posthoc test (Tukey test) using R identified proteins differentially expressed. P value for each protein spots shows in attached excel file.

    Figure 3.
    Figure 3.  Cy-Dye Gel Electrophoresis Image of Protein Spots from Tumor Extract.

     

    Figure 4.
    Figure 4.  Proteomic Data: 2-D gel electrophoresis image of protein spots, using 3-in-1 (Cy-Dye) technique. Includes tumor, non-tumor, and control intestinal tissue samples, each with different dye.

     

    Of 980 analyzed protein spots, 78 spots were differentially expressed among normal and tumor tissues (AFe vs. High Fe (p<0.05)). Among these spots, 36 changed in tumor vs. normal tissue (12↓; 24^) and 18 differed between tumors in mice fed AFe vs. High Fe (5↓; 13^).

    Figure 5.
    Figure 5.  Network/pathway signaling analyses: Based on proteomic data (see Fig. 3 & 4), one of the network/protein signaling pathways determined involved modulation of the antioxidant enzyme, Glutathione-S-transferase. Tumor (T) vs. normal (non-tumor; NT) intestinal tissue.

     

    CONCLUSIONS:
    Excess dietary iron is associated with changes in expression of proteins in tumors involved in generation or reduction of reactive oxygen species and proteins involved in protein degradation. Using Ingenuity Pathways Analysis, we found 4 highly significant functional networks in tumor as compared to normal tissue and 2 in tumors from mice fed adequate as compared to high iron. Notably, the top networks in both cases were associated with functions implicated in cancer, GI disease, and inflammatory disease.  (See Figure 6, below)

    Figure 6.
    Figure 6.  Biological pathways, modulated by excess dietary iron (iron supplementation), include cancer and inflammatory disease.

 



Selected Publications

  1. Sean R Lynch, Thomas Bothwell, and the SUSTAIN Task Force on Iron Powders (Lou Campbell, Kristina Cowan, Ray Glahn, Leif Hallberg, Michael Hoppe, Lena Hulthen, Janet R Hunt, Richard F Hurrell, Dennis Miller, James H Swain, Liz Turner, Pattanee Winichagoon, C.K. Yeung, Christophe Zeder, and Michael B Zimmermann).  (2007) "A Comparison of Physical Properties, Screening Procedures and a Human Efficacy Trial for Predicting the Bioavailability of Commercial Elemental Iron Powders Used for Food Fortification." Int. J. Vitam. Nutr. Res.; 77(2): 107-124.

  2. James H Swain, Johnson LK, Penland JG and Hunt JR. (2007) "Combating iron deficiency: Electrolytic iron or ferrous sulfate increased body iron in women with moderate to low iron stores."   J. Nutr.; 137: 620-627.

  3. James H Swain, Johnson, LK and Hunt, JR. (2006) "An irradiated electrolytic iron fortificant, poorly absorbed by human subjects, is also less responsive to the enhancing effect of ascorbic acid."  J. Nutr.; 136: 2167-2174.

  4. Petersen, HL, Peterson, CT, Reddy, MB, Hanson, KB, Swain JH, Sharp, RL and Alekel, DL.  (2006) "Body composition, dietary intake and iron status of female collegiate swimmers."  Intl. J. Sport Nutr. And Exercise Metab.; 16: 281-295.

  5. Swain JH, Newman SM, and Hunt JR.  (2003) "Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area."  J Nutr.; 133(11): 3546-3552.

  6. James H. Swain, D. Lee Alekel, Sarah B. Dent, Charles T. Peterson, and Manju B. Reddy.  (2002) "Iron indexes and total antioxidant status in response to soy protein intake in perimenopausal women."  Am. J. Clin. Nutr.; 76: 165-171.

  7. James H. Swain, Louisa B. Tabatabai, and Manju B. Reddy.  (2002) "Histidine content of low molecular weight beef proteins influences nonheme iron absorption in Caco-2 cells."  J. Nutr.; 132: 245-251.

  8. Sarah B. Dent, Charles T. Peterson, Larry D. Brace, Kathy B. Hanson, James H. Swain, Manju B. Reddy, Jennifer G. Robinson, and D. Lee Alekel. (2001) "Soy protein intake by perimenopausal women does not affect circulating lipids and lipoproteins or coagulation and fibrinolytic factors."  J. Nutr.; 131: 2280-2287.

 

  1. PubMed

 

primary FACULTY

James Swain

CONTACT:

OFFICE /
CASE School of Medicine
WG48 / Office  |  BRB909 / Lab
Cleveland, OH 44106

216 / 368 8554  OFFICE
216 / 368 6644  FAX

james.swain@case.edu

MAILING ADDRESS /
10900 Euclid Avenue
School of Medicine
WG48
Cleveland, OH 44106-4954