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ABSTRACT

Information theory provides powerful tools for understanding
communication systems. This analysis can be applied to in-
tercellular signal transduction, which is a means of chemical
communication among cells and microbes. We discuss how
to apply information-theoretic analysis to ligand-receptor sys-
tems, which form the signal carrier and receiver in intercellu-
lar signal transduction channels. We also discuss the applica-
tions of these results to neuroscience.

1. INTRODUCTION

The human brain is a vast communications engine, compris-
ing some 100 billion nerve cells connected by upwards of 100
trillion synapses. Information theory has a long history of
application in the biological sciences generally [1] and neu-
roscience in particular [2]. Capacity and mutual informa-
tion have proven fruitful concepts in understanding sensory
systems [3, 4, 5], fault tolerant computation [6]; computa-
tion in spiking neurons [7, 8]; biological computation under
metabolic constraints [9, 10, 11], and information processing
limitations of genetic regulatory elements [12, 13].

Here we discuss some capacity bounds for several signal-
ing systems present in the brain. A common motif in neu-
robiological communication is the transduction of chemical,
mechanical, or optical signals into ionic currents across the
membrane of a nerve cell. Signal transduction typically in-
volves specialized protein molecules: rhodopsin can detect
single photon absorptions in the retina [14]; acetylcholine re-
ceptor proteins convert the chemical neurotransmitter signal
into muscle-activating currents to move the limbs [15]. We
focus here on two examples: channelrhodopsin (ChR, widely
used as a control mechanism for neuroscience experiments)
and the acetylcholine receptor (AChR). Both systems convert
their signals into an all-or-none conductance, effectively act-
ing as graded input, binary output systems; both have multi-
ple internal states (three for ChR, five for AChR). Hence the
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state of the system is only partially observable, complicating
capacity estimates.

2. MODEL

2.1. Master equation kinetics

For a receptor with k discrete states, there exists a k-dimensional
vector of state occupancy probabilities p(t), given by

p(t) = [p1(t), p2(t), . . . , pk(t)] , (1)

where pi(t) represents the probability of a given receptor oc-
cupying state i at time t. The chemical kinetics of the re-
ceptor are captured by a differential equation known as the
master equation. Let Q = [qij ] represent a k × k matrix of
rate constants, where qij represents the instantaneous rate at
which receptors starting in state i enter state j. Then the mas-
ter equation is given by dp/dt = p(t)Q.

We use the notation from [16]. In the following examples:

• Rates which are sensitive to the input are directly pro-
portional to the input x(t): for example, q12 is the tran-
sition rate from state 1 to state 2, which is not sensitive
to the input; while q30x(t) is the transition rate from
state 3 to state 0, sensitive to the input; and

• The ith diagonal element is written Ri, and is set so
that the ith row sums to zero (so, if x(t) appears in the
ith row, Ri depends on x(t)).

Example 1: Channelrhodopsin-2 (ChR2). The ChR2 re-
ceptor is a light-gated ion channel. The receptor has three
states, named Closed (C1), Open (O2), and Desensitized (C3).
The channel-open (O) state O2 is the only state in which the
ion channel is open, passing an ion current. The channel-
closed (C) states, C1 and C3, are distinct in that the receptor
is light-sensitive in state C1, and insensitive in state C2 [17].
The rate matrix for ChR2 is

Q =

 R1 q12x(t) 0
0 R2 q23
q31 0 R3

 . (2)

Fig. 1 shows state labels and allowed state transitions. Param-



Fig. 1. Depiction of allowed state transitions for ChR2. Sen-
sitive transitions are depicted with bold arrows. States are la-
belled by their ion channel state: {C,O} for closed and open,
respectively; state number is in subscript. Dashed lines sur-
round all states in either the closed or open state. Transition
rates, listed in Table 1, correspond to the vertices associated
with each directed edge: for example, the rate from state O2

to state C3 is q23.

eter values from the literature are given in Table 1. We will
assume, as in [18], that the opening rate q12x(t) is directly
proportional to the irradiance of the light on the receptor.

Parameter from [17] Units
q12x(t) ≤ 5× 103 s−1

q23 50 s−1

q31 17 s−1

Table 1. Rate parameters for ChR2, adapted from [17].

Example 2: Acetylcholine (ACh). The ACh receptor is a
ligand-gated ion channel. The receptor has five states, with
rate matrix

Q =


R1 q12x(t) 0 q14 0
q21 R2 q23 0 0
0 q32 R3 q34 0
q41 0 q43x(t) R4 q45
0 0 0 q54x(t) R5

 . (3)

There are three sensitive transitions: r12x(t), r43x(t), and
r54x(t), which are proportional to agonist concentration x(t).
These transitions represent binding of an ACh molecule to
one of two binding sites. Fig. 2 shows the allowed state tran-
sitions. State C5 corresponds to both sites unoccupied; states
C4, O1 correspond to one site occupied; states C3, O2 corre-
spond to both sites occupied. Table 2 gives parameter values;
the concentration of ACh, x(t), is measured in mol/`.

The same state-naming convention is used in the figure as
with ChR2: states with an open ion channel are O1 and O2;
states with a closed ion channel are C3, C4, and C5.

For each of the preceding examples, the rate constants de-
pend on environmental conditions, and thus can be reported
differently in different sources (e.g., [20] for ChR2).

Parameter Name in [19] Value/range Units
q12x(t) k+2x 5× 108x(t) s−1

q14 α1 3× 103 s−1

q21 2k∗−2 0.66 s−1

q23 α2 5× 102 s−1

q32 β2 1.5× 104 s−1

q34 2k−2 4× 103 s−1

q41 β1 15 s−1

q43x(t) k+2x (5× 108)x(t) s−1

q45 k−1 2× 103 s−1

q54x(t) 2k+1x (1× 108)x(t) s−1

Table 2. Rate parameters for ACh, adapted from [19], where
x(t) represents the molar concentration of ACh in mol/`.

2.2. From the master equation to discrete-time Markov
chains

It is possible to discretize the master equation and describe
the dynamics of a receptor as a discrete-time Markov chain;
this is important to our paper as we rely on capacity results
for discrete-time Markov channels. Briefly, we can discretize
the master equation by writing

p(t+ ∆t) = p(t) (I + ∆tQ) + o(∆t) (4)

where I is the identity matrix, and o(∆t)/∆t → 0 as ∆t →
0. If we let

p[j] = p(j∆t), (5)

then this equation becomes

p[j + 1] = p[j](I + ∆tQ). (6)

Thus, we have a discrete-time Markov chain with transition
probability matrix

P = I + ∆tQ. (7)

The matrix P satisfies the conditions of a Markov chain
transition probability matrix (nonnegative, row-stochastic) as
long as ∆t is small enough. Note that while the probability
p(t) evolves deterministically, the channel state itself is a
non-Gaussian random process taking discrete values.

3. SIGNAL TRANSDUCTION AS A
COMMUNICATIONS SYSTEM

3.1. Communication model of receptors

We now discuss how the receptors can be described as
information-theoretic communication systems: that is, in
terms of input, output, and conditional input-output PMF.

Input: The receptor input x(t) consist of either light inten-
sities or ligand concentrations, and is discretized in time: for
integers i, the input is x(i∆t); we will write xi = x(i∆t).



Fig. 2. Depiction of allowed state transitions for ACh. Sen-
sitive transitions are depicted with bold arrows. States are la-
belled by their ion channel state: {C,O} for closed and open,
respectively; state number is in subscript. Dashed lines sur-
round all states in either the closed or open state. Transition
rates, listed in Table 2, correspond to the vertices associated
with each directed edge: for example, the rate from state O2

to state C3 is q23.

We will also discretize the amplitude, so that for every t,
xi ∈ {x1, x2, x3, . . . , xk} =: X . We will assume that the
xi are distinct and increasing; further, we assign the lowest
value x1 and the highest value xk the symbols xL and xH, re-
spectively.

Output: Receptor states from our example systems are
labelled, e.g., C3 or O2. The output of the communication
system is given either by: the receptor state y(t), given by
the subscript of the state label; or by the ion channel state
z(t), either C or O, without subscript. These are discretized,
respectively, to yi = y(i∆t) and zi = z(i∆t).

Conditional input-output PMF: From (4)-(7), yn forms a
Markov chain given xn, so

pY n|Xn(yn|xn) =

n∏
i=1

pYi | Yi−1,Xi
(yi | yi−1, xi), (8)

where pYi | Yi−1,Xi
(yi | yi−1, xi) is given by the appropriate

entry in the matrix P , and where y0 is null.1 For example, us-
ing ACh, suppose yi−1 = 1, yi = 2, and xi = xH. Then from
(7) and Table 2, we have pYi | Yi−1,Xi

(2 |1, xH) = ∆tq12(t) =
5× 108xH∆t.

3.2. Information theory and Shannon capacity

We briefly review the information-theoretic concepts used in
the paper. The reader is directed to [21] for further detail.

A communication channel consists of: a vector of inputs
[x1, x2, . . .], a vector of outputs [y1, y2, . . .], and a conditional
probability density function relating outputs to inputs. Using
the following vector notation:

xn = [x1, x2, . . . , xn] (9)
yn = [y1, y2, . . . , yn], (10)

1We say a variable is “null” if it vanishes under conditioning, i.e., if y0 is
null, then pY1|X1,Y0

(y1 | x1, y0) = pY1|X1
(y1 | x1).

the stochastic input-output relationship is given by the condi-
tional joint PMF pY n|Xn(yn|xn).

For a channel with inputs xn and outputs yn, the mutual
information I(Xn;Y n) gives the maximum information rate
that may be transmitted reliably over the channel. Mutual
information is given by

I(Xn;Y n) = E

[
log

pY n|Xn(yn | xn)

pY n(yn)

]
(11)

(12)

where pY n|Xn(yn | xn) is the conditional probability mass
function (PMF) of Y n given Xn, and Y , and pY (y) is the
marginal PMF on Y .

As n → ∞, generally I(Xn;Y n) → ∞ as well; in
this case, it is useful to calculate the mutual information rate,
given by

I(X;Y )

= lim
n→∞

1

n

∑
xn,yn

pXn,Y n(xn, yn) log
pY n|Xn(yn | xn)

pY n(yn)
.

(13)

We will assume that receptor response is stationary. Simi-
lar derivations hold for I(X;Z), the mutual information rate
from inputs to ion channel state.

3.3. Receptor IID Capacity

The capacity C of a communication system is the maximum
over all possible input distributions pXn(xn) of I(X;Y ). If
the inputs pXn(xn) is restricted to the set of independent,
identically distributed (IID) input distributions, i.e. we can
write pXn(xn) =

∏n
i=1 p(xi), then we have the IID capacity,

written Ciid. It should be clear that Ciid < C.
We now calculate Ciid for the discrete-time receptor

model. Although IID inputs are not realistic in practice (as
concentration may persist for long periods of time), they can
be capacity-achieving under some circumstances [22].

In general, since Y n is a time-inhomogeneous Markov
chain if Xn is known, we can write

pY n|Xn(yn | xn) =

n∏
i=1

pYi|Xi,Yi−1
(yi | xi, yi−1), (14)

Under IID inputs, it can be shown that the receptor states Y n

form a time-homogeneous Markov chain, that is,

pY n(yn) =

n∏
i=1

pYi|Yi−1
(yi | yi−1), (15)

where y0 is again null, and where

pYi|Yi−1
(yi | yi−1) =

∑
x

pYi|Xi,Yi−1
(yi | x, yi−1)pX(x).

(16)



Using (14)-(15), (11) reduces to

I(Xn;Y n) =

n∑
i=1

E

[
log

pYi |Xi,Yi−1
(yi | xi, yi−1)

pYi|Yi−1
(yi | yi−1)

]
(17)

and (13) reduces to

I(X;Y ) = E

[
log

pYi |Xi,Yi−1
(yi | xi, yi−1)

pYi|Yi−1
(yi | yi−1)

]
(18)

Considering the diagrams in the previous section, some
of the transitions were sensitive (i.e., dependent on input xi),
and others were insensitive (i.e., independent of xi). From
(18), if the transition pYi |Xi,Yi−1

(yi | xi, yi−1) is insensitive,
then

log
pYi|Xi,Yi−1

(yi | xi, yi−1)

pYi|Yi−1
(yi | yi−1)

= log
pYi|Yi−1

(yi | yi−1)

pYi|Yi−1
(yi | yi−1)

(19)

= log 1 = 0. (20)

Thus, (18) is calculated using the sensitive transitions only.
Let S = Y × Y represent the set of sensitive transitions,

i.e., (yi−1, yi) ∈ S if pYi|Xi,Yi−1
(yi | xi, yi−1) is a function

of xi. Moreover define

φ(p) =

{
0, p = 0

p log p, p 6= 0.
(21)

Then

I(X;Y ) = (22)∑
x∈X

pX(x)
∑

(yi−1,yi)∈S

πyi−1φ(pYi|Xi,Yi−1
(yi | xi, yi−1))

−
∑

(yi−1,yi)∈S

πyi−1φ

(∑
x∈X

pX(x)pYi|Xi,Yi−1
(yi | xi, yi−1)

)
.

Using (7), the matrix Q for the desired receptor, and an ap-
propriately selected ∆t, we can calculate I(X;Y ).

Since Zn is a hidden Markov process, calculating the IID
capacity I(X;Z) from inputs to ion channel state is done in
one of two ways: either using Monte Carlo techniques to eval-
uate the expectation in (11), replacing yn with zn; or find-
ing upper and lower bounds, generalizing the technique from
[23]. In either case, the probability of the hidden Markov pro-
cess zn is obtained using the sum-product algorithm [24]. By
the data processing inequality. I(X;Y ) ≥ I(X;Z).

4. RESULTS

Mutual information results are given in Figure 3. The IID
capacity may be found by taking the maximum of each curve.
We see that when sensitive transitions are directly observ-
able, there is a small gap between I(X;Y ) and I(X;Z)
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Fig. 3. Mutual information with IID inputs for ChR2 (top fig-
ure) and ACh (bottom figure). Results for receptor state refer
to I(X;Y ), mutual information from input to the state of the
receptor; results for ion channel refer to I(X;Z), mutual in-
formation from input to the state of the ion channel.

(cf. ChR2); and when sensitive transitions are not directly
observable, there is a large gap (cf. ACh); thus, the receptor
capacity is not always a tight bound for I(X;Z). Heuristi-
cally, this gap appears to occur because of the structure of the
channel. The sensitive transition for ChR has stoichiometry
vctrl = [−1, 1, 0] and the observation vector is g = [0, 1, 0];
their inner product vcrtl · gT = 1. In contrast, the three
sensitive transitions for ACh have stoichiometries v1

ctrl =
[−1, 1, 0, 0, 0],v2

ctrl = [0, 0, 1,−1, 0],v3
ctrl = [0, 0, 0, 1,−1]

respectively; the observation vector is g = [1, 1, 0, 0, 0], and
vi

crtl · gT = 0 for each i.
Ideally, information theoretic analysis would lead to pre-

dictions comparable with experimental data. However, recep-
tor binding is part of a multistage channel that includes secre-
tion and diffusion. Channel rhodopsin is part of a multistage
channel too: light-triggered currents can promote or inhibit
action potentials depending on the type of ion coupled to the
channel. Both channels involve nonlinearities and memory



effects that call for additional analysis.
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