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Abstract Jack Cowan’s remarkable career has spanned, and molded, the develop-
ment of neuroscience as a quantitative and mathematical discipline combining deep
theoretical contributions, rigorous mathematical work and groundbreaking biological
insights. The Banff International Research Station hosted a workshop in his honor,
on Stochastic Network Models of Neocortex, July 17–24, 2014. This accompany-
ing Festschrift celebrates Cowan’s contributions by assembling current research in
stochastic phenomena in neural networks. It combines historical perspectives with
new results including applications to epilepsy, path-integral methods, stochastic syn-
chronization, higher-order correlation analysis, and pattern formation in visual cor-
tex.

Jack Cowan’s remarkable career has spanned, and molded, the development of neu-
roscience as a quantitative and mathematical discipline combining deep theoretical
contributions, rigorous mathematical work and groundbreaking biological insights.
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His achievements include an enormously successful mathematical theory for the pat-
terning of spontaneous activity in neural networks of the human visual cortex, which
underly a rich panoply of well-documented geometric visual hallucinations [11, 12,
26]. This work has also been extended to models of how cortical circuits amplify
stimulus feature selectivity via spontaneous symmetry breaking mechanisms [6, 9].
One of the significant features of the hallucinations work is that it led to novel results
in symmetric bifurcation theory, in particular, with regards to the so-called “shift–
twist” action of the Euclidean group on R2 × S1 [10]. It has also led to the devel-
opment of new geometric approaches to computer vision, based on sub-Riemannian
contact structures and variational problems [48, 49, 62]. Hence, the theory of halluci-
nations provides a nice example of how neuroscience can inspire new mathematics.

Jack Cowan’s quest to develop a self-consistent statistical treatment of the mam-
malian cortex began with the formulation in the mid-1960s of the firing-rate model
of individual neural activity [20], which eventually led to the well-known Wilson–
Cowan neural field equations [58, 59], stochastic single neuron models [44, 46, 47]
and a broad class of probabilistic neural field models [14–16]. He and his students
were the first to apply dynamical systems and bifurcation theory to the analysis of
neural field equations [27–29]. He was also among the first to think about the devel-
opmental mechanisms of how the cerebral cortex is organized into what are known as
cortical maps [57]; [23, 50, 51] and did early work on methods for solving the partial
differential equations related to the propagation of electrochemical signals along neu-
ral dendrites [17], and applying neural field models to clinically important problems
such as the generation of robust breathing rhythms in the mammalian brainstem [31,
32].

In addition to having a direct intellectual impact on the development of math-
ematical neuroscience, Jack Cowan has mentored an impressive array of stu-
dents and junior colleagues. In 2014 we organized a Festschrift conference at
Banff International Research Station on Stochastic Network Models of Neocor-
tex (https://www.birs.ca/events/2014/5-day-workshops/14w5138) on the occasion of
Jack’s 81st birthday. In tandem with the workshop we have organized this special
issue of The Journal of Mathematical Neuroscience to highlight the history, current
work, and the bright future for the mathematical modeling of stochastic cortical net-
works.

1 Origins of Neural Field Models

In 1962, while a graduate student at MIT, Jack Cowan asked Warren McCulloch,
Walter Pitts, and Norbert Wiener each what mathematical framework they thought
would be best suited to studying the functioning of the human brain. According to
Cowan, McCulloch thought discrete logic systems, such as the Boolean logic em-
ployed in the seminal 1943 paper on neural networks and first-order predicate logic,
would be the most relevant. Pitts, in contrast, suggested moving to differential equa-
tions, so that one could exploit the tools of calculus. Norbert Wiener suggested that
path-integral methods would be the best choice for studying stochastic phenomena
in neural networks [22]. Cowan followed Pitts’ suggestion most closely and devoted
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much attention to formulating integro-differential equations to represent neural ac-
tivity. Noting an analogy between predator–prey systems and excitatory–inhibitory
interactions in the central nervous system, Cowan put excitatory populations in the
role of prey, with inhibitory populations taking the role of predators. This insight
led to the first application of qualitative dynamical systems analysis to neural field
equations. Much later, he would realize the significance of Wiener’s suggestion as
he ultimately developed path-integral machinery for studying stochastic neural field
equations with Ohiro, Buice, Chow, Neuman, and others [14–16, 24, 25, 45].

The paper by Cowan, Neuman and van Drongelen in the present collection [24]
reviews the historical development of the mean field and stochastic Wilson–Cowan
equations, and describes new results related to the statistical behavior of cortex under
resting conditions and in response to weak and strong stimulation. The paper reviews
experimental studies showing that (1) resting cortex exhibits sparse spontaneous ac-
tivity that is temporally and spatially correlated; (2) when resting cortex is disturbed
by a weak stimulus a wave of cortical activity propagates from the stimulation site at
a large velocity (circa 0.3 mm/msec), while decrementing exponentially [41, 42]; and
(3) when resting cortex is disturbed by a stronger stimulus a longer lived active state is
evoked that propagates more slowly (circa 0.1 mm/msec). The authors argue that the
resting cortex and the weakly driven cortex exist in a fluctuation driven regime, the
statistical structure of which corresponds to a system near a continuous phase tran-
sition in the universality class of directed percolation, close to a Bogdanov–Takens
bifurcation; and, moreover, that the essential features of the activity near this tran-
sition are captured by a stochastic Wilson–Cowan equation based on an underlying
two-state model [4, 55]. In contrast, they argue that the strongly driven cortex enters
a mean-driven state that is well described by the original mean-field equations.

2 Applications to Epilepsy

Cowan’s earliest attempts at a statistical treatment of cortical activity relied on an
analogy with the predator–prey equations, with inhibitory cells playing the role of
the predator and excitatory cells playing the role of prey. The quadratic nonlinearities
in the earliest models (e.g. due to Kerner [37]) were equivalent, under a change of
variables, to a Hamiltonian system, meaning they could not possess asymptotically
stable attractors such as attracting fixed points or asymptotically stable limit cycles.
A crucial innovation was to exploit dissipative dynamics, which Cowan and Wilson
accomplished by introducing a sigmoidal activation function as a canonical saturat-
ing response function [58]. However, the sigmoid is a monotonically increasing func-
tion of its input, so it cannot capture nonmonotonic response behavior, for instance
cessation of firing under increasing synaptic drive due, also known as depolariza-
tion block. But just such a mechanism has been proposed to underly propagation of
pathological firing activity in some forms of epilepsy (inhibitory interneurons driven
into depolarization block leading to failure of inhibitory veto) as well as spreading
depression [56]. In the present issue, Meijer et al. [40] augment the Wilson–Cowan
framework by replacing the classic monotonic activation function with a bell-shaped
curve that reflects decreasing response to sufficiently large stimulation. They perform
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a bifurcation analysis of the Wilson–Cowan model with such a Gaussian activation
function. This modification of the original equations leads to a new stable equilibrium
with elevated activity in the excitatory population, and suppressed activity in the in-
hibitory population. The authors demonstrate numerically that these equations can
sustain propagating wave solutions which they compare with their own experimental
observations of epileptiform activity.

The local Wilson–Cowan equations [58] and the spatially extended equations [59]
can produce saddle-node, Hopf, Turing, and interacting Turing–Hopf bifurcations.
Negahbani et al. [43] augment the W-C field equations with small additive white noise
perturbation of the E and I population activities, and study the resulting behavior
near each type of bifurcation using numerical simulation and linear noise analysis.
They demonstrate critical slowing down, growth of long-range spatial correlations,
and noise enhanced pattern formation. For comparison, they include experimental ev-
idence of corresponding phenomena preceding “seizure-like events” in murine hip-
pocampal slices treated with carbachol in a low-magnesium artificial cerebrospinal
fluid preparation. By leveraging the relative tractability of the 1D spatially extended
Wilson–Cowan equations they propose a novel tool for seizure prediction based on
changes in cortical activity at low spatial and temporal frequencies.

3 Path-Integral Methods

Modern advances in the theory of stochastic activity in neuronal networks have re-
lied heavily on path-integral methods. Wiener originated path-integral methods for
studying stochastic processes in the 1920s, and they have found wide application in
quantum field theory and statistical mechanics. Cowan and Butz formulated an early
diagrammatic approach for solving the cable equation in arbitrary branched dendritic
trees with constant conductivity [17], and Cowan and Ohira developed a path-integral
approach to stochastic neural dynamics circa 1993 [45]. But a clear formulation of
the path-integral approach to stochastic neural dynamics awaited the work of Buice,
Cowan and Chow [14–16]. In the present issue Chow and Buice [19] provide a tuto-
rial introduction to path-integral methods specifically tailored to the case of stochastic
differential equations arising in neural dynamics. The article begins with the gen-
erating function formalism from elementary probability theory before working up
to the path-integral formalism. The article carefully presents analytically solvable
cases, such as the Ornstein–Uhlenbeck process, as a foundation for perturbative ap-
proaches to nonlinear dynamics. They emphasize practical aspects such as how to
use the response function method to obtain moments of the density, and go on to
address moment generating functionals for ensembles of trajectories, functional in-
tegrals for SDEs, and Feynman diagrams, including semiclassical approximation via
loop expansion.

Bressloff’s contribution to the special issue [5] develops the path-integral frame-
work further by considering a hybrid stochastic network in which neuronal activity
works as a discrete conditional Markov process influenced by slowly varying condi-
tionally deterministic synaptic activations. The resulting piecewise deterministic (or
hybrid) Markov process enjoys a separation of timescales; exploiting the small pa-
rameter allows for derivation of a variational principle, analysis of most likely escape
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paths from a metastable state, rigorous derivation of a diffusion approximation near
a stable fixed point, analysis of noise enhanced Turing-type pattern formation, and
a correction to the voltage-based mean field equations by way of a loop expansion.
In all, the paper illustrates how the path-integral representation provides a unifying
framework for a plethora of asymptotic perturbation methods applicable to a broad
class of hybrid stochastic neural network models.

4 Stochastic Synchronization

Synchronization and entrainment of nonlinear oscillators is an aspect of neuronal dy-
namics playing an important role in both normal and pathological activity. Rhythms
play a constructive role in respiration, for instance [31, 32]. In the present issue
Verduzco-Flores [54] studies stochastic synchronization of uncoupled oscillators with
type I phase resetting curves as an approach to understanding coordinated firing of
Purkinje cells, implicated as part of the cerebellar circuitry impacting motor control
and motor learning. The author overcomes the technical challenge posed by coordi-
nated excitatory and lagged inhibitory input from climbing fibers and molecular-level
interneurons through a succession of analytic and numerical refinements of an effec-
tive phase response curve model. Stochastic synchronization has a long history in
neuroscience. Early examples involving nerve cells driven by fluctuating inputs in-
cluded Bryant and Segundo’s white noise experiments on Aplysia motor neurons [13]
and Mainen and Sejnowski’s demonstration of reliable spike timing in mammalian
cortical neurons [39]. Cowan and collaborators helped provide an early explanation
for these phenomena in terms of nonlinear oscillator entrainment and resonance [34],
and established conditions guaranteeing phase locking of neuronal oscillators [33].
Indeed the existence of limit cycle oscillations was an important feature of the origi-
nal deterministic Wilson–Cowan network [27, 58, 59] which provided an early expla-
nation for the oscillations observed in EEG recordings; synchronization in Wilson–
Cowan networks has been widely investigated [18].

5 Beyond Mean-Field Correlation Analysis

The contribution by Fasoli et al. [30] uses a non-spiking voltage model with sigmoidal
activation function, driven by both deterministic and additive white noise currents,
for a rigorous analysis of correlated activity. The authors develop a novel formalism
for evaluating the cross-correlation structure of a finite-size recurrently connected
network. They incorporate three sources of variability (in the initial voltages, in the
additive white noise current, and in the synaptic weight distribution) and five small
parameters: the noise intensity, standard deviation of the initial voltage ensemble,
standard deviation of the synaptic weight ensemble, amplitude of the time-varying
component of the synaptic weights, and amplitude of the time-varying component of
the input current. By expanding in these small parameters, and assuming Gaussian
distributions for each source of variability, the authors obtain analytic expressions for
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the n-fold covariance of the voltages of each cell in the network, as well as (asymp-
totically) the covariances of the firing rates. The article demonstrates how one can re-
late anatomical and functional connectivity analytically, and fully develops the cases
of certain regular graphs, specifically networks with block-circulant and hypercube
topologies. Interestingly, they find that pairwise correlations in the network decrease
when the constant (DC) component of the driving current is increased to large val-
ues, because saturation of the sigmoidal activation function weakens the effective
connectivity when the driving current is large. In addition, Fasoli et al. find that for
certain parameter values, the neurons can become almost perfectly correlated even if
the sources of randomness are independent.

Leen and Shea-Brown [38] further extend the analysis of n-point correlations in-
duced by common noise inputs by studying the emergence of beyond-pairwise corre-
lations in two spiking neuron models: the exponential integrate-and-fire (EIF) model
with cells driven by partially correlated white noise currents, and a linear–nonlinear
(LNL) spiking model, a doubly stochastic point process derived from the EIF. The
binned spike trains obtained from these models exhibit stronger higher-order spike
count correlations than could be predicted under a pairwise maximum entropy Ansatz
from the first- and second-order statistics alone. The authors then relate these beyond-
pairwise correlations to those obtained in more abstract “dichotomous Gaussian”
(DG) models [3, 61] both numerically and semi-analytically. Although the authors’
approach neglects physiological effects such as a neuron’s refractory period (which
played a key role in the original Wilson–Cowan derivation), it nevertheless helps
explain why the simple DG model succeeds in capturing higher-order correlations
observed in empirical data from some populations of spiking neurons.

6 Pattern Formation in Visual Cortex

Beginning in the 1970s Cowan and his students pioneered the application of equiv-
ariant bifurcation theory to pattern formation in cortical networks. First-principles
explanation of a broad class of geometric visual hallucination patterns began with
Cowan’s work with Ermentrout [26] and later extended to include anatomical de-
tails such as long-range anisotropic, orientation-specific connectivity [7, 10–12, 21].
Similar methods yielded results on the formation of connectivity patterns underlying
phenomena such as orientation preference, ocular dominance, and spatial frequency
maps in primary visual cortex (area V1) [2, 6, 8, 9, 50–52]. Two contributions in this
collection report on continued advances in understanding pattern formation in corti-
cal activity and connectivity patterns. The paper by Afgoustidis [1] builds on work by
Wolf, Geisel, Kasschube and others [35, 36, 60] which showed a surprising statistical
regularity in both imaging studies of orientation preference maps and phenomeno-
logical models for map formation in the presence of symmetry constraints, namely,
that the typical density of orientation preference singularities (“pinwheels”) and the
hypercolumn area are in a constant ratio of π across species. Wolf and Geisels’ anal-
ysis, like that in Cowan’s papers, were developed assuming the symmetries of the Eu-
clidean plane. Afgoustidis extends the analysis for the specification of “typical” ori-
entation patterns to symmetric manifolds M of constant curvature, namely the sphere
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and the hyperbolic plane as well as Euclidean space. He generalizes the key elements
of Wolf and Geisel’s framework: smooth Gaussian random fields, invariance with re-
spect to an appropriate Lie group of transformations of M, and monochromaticity,
i.e. composition of orientation preference maps via superposition of (uniformly, ran-
domly distributed) “plane waves” with a common wavelength. This last element is
interpreted in terms of the irreducible factors in the Plancherel decomposition of the
Hilbert space of square-integrable functions on the Euclidean plane, the sphere, and
the hyperbolic plane, respectively.

Cowan and colleagues studied spontaneous pattern formation using a model in
which the cortical activity was represented as a function a(r,φ) depending simul-
taneously on cortical (or retinotopic) location and preferred orientation. Veltz et al.
[53] challenge and extend this work by incorporating a discrete lattice symmetry
into the representation of the cortical distribution of orientation preference, i.e. they
study patterns in the activity a(r) when a lattice-periodic orientation map φ(r) is
imposed. They investigate a model in which isotropic local coupling is perturbed
by weak anisotropic lateral coupling in order to understand how long-range connec-
tions with discrete lattice symmetry would affect the stability of different patterns of
spontaneous activity (hallucination patterns). Their analysis shows that the possible
periodic lattices of pinwheels (orientation preference singularities) is a subset of the
wallpaper groups of Euclidean symmetries, and that the simplest spontaneously bi-
furcating dynamics generated by these networks are determined by the perturbation
of invariant tori.
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61. Yu S, Yang H, Nakahara H, Santos GS, Nikolić D, Plenz D. Higher-order interactions characterized

in cortical activity. J Neurosci. 2011;31(48):17514–26.
62. Zweck J, Williams LR. Euclidean group invariant computation of stochastic completion fields using

shiftable–twistable functions. J Math Imaging Vis. 2004;21:135–54.


	Stochastic Network Models in Neuroscience: A Festschrift for Jack Cowan. Introduction to the Special Issue
	Abstract
	Origins of Neural Field Models
	Applications to Epilepsy
	Path-Integral Methods
	Stochastic Synchronization
	Beyond Mean-Field Correlation Analysis
	Pattern Formation in Visual Cortex
	Competing Interests
	Authors' Contributions
	Acknowledgements
	References


