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Abstract In this paper we provide two representations for
stochastic ion channel kinetics, and compare the perfor-
mance of exact simulation with a commonly used numer-
ical approximation strategy. The first representation we
present is a random time change representation, popular-
ized by Thomas Kurtz, with the second being analogous to a
“Gillespie” representation. Exact stochastic algorithms are
provided for the different representations, which are prefer-
able to either (a) fixed time step or (b) piecewise constant
propensity algorithms, which still appear in the literature.
As examples, we provide versions of the exact algorithms
for the Morris-Lecar conductance based model, and detail
the error induced, both in a weak and a strong sense, by the
use of approximate algorithms on this model. We include
ready-to-use implementations of the random time change
algorithm in both XPP and Matlab. Finally, through the
consideration of parametric sensitivity analysis, we show
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how the representations presented here are useful in the
development of further computational methods. The gen-
eral representations and simulation strategies provided here
are known in other parts of the sciences, but less so in the
present setting.
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1 Introduction

Fluctuations in membrane potential arise in part due to
stochastic switching in voltage-gated ion channel popula-
tions (Dorval Jr. and White 2005; Laing and Lord 2010;
White et al. 2000). We consider a stochastic modeling, i.e.
master equation, framework (Anderson and Kurtz 2011;
Colquhoun and Hawkes 1983; Earnshaw and Keener 2010;
Lee and Othmer 2010; Wilkinson 2011) for neural dynam-
ics, with noise arising through the molecular fluctuations of
ion channel states. We consider model nerve cells that may
be represented by a single isopotential volume surrounded
by a membrane with capacitance C > 0. Mathematically,
these are hybrid stochastic models which include compo-
nents, for example the voltage, that are continuous and
piecewise differentiable and components, for example the
number of open potassium channels, that make discrete tran-
sitions or jumps. These components are coupled because
the parameters of the ODE for the voltage depend upon the
number of open channels, and the propensity for the open-
ing and closing of the channels depends explicitly upon the
time-varying voltage.

These hybrid stochastic models are typically described
in the neuroscience literature by providing an ODE govern-
ing the absolutely continuous portion of the system, which
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is valid between jumps of the discrete components, and a
chemical master equation providing the dynamics of the
probability distribution of the jump portion, which itself
depends upon the solution to the ODE. These models are
piecewise-deterministic Markov processes (PDMP) and one
can therefore also characterize them by providing (i) the
ODE for the absolutely continuous portion of the system
and (ii) both a rate function that determines when the next
jump of the process occurs and a transition measure deter-
mining which type of jump occurs at that time (Davis 1984).
Recent works making use of the PDMP formalism has led
to limit theorems (Pakdaman et al. 2010; 2012), dimen-
sion reduction schemes (Wainrib et al. 2012), and extensions
of the models to the spatial domain (Buckwar and Riedler
2011; Riedler et al. 2012).

In this paper, we take a different perspective. We will
introduce here two pathwise stochastic representations for
these models that are similar to Itô SDEs or Langevin mod-
els. The difference between the models presented here and
Langevin models is that here the noise arises via stochas-
tic counting processes as opposed to Brownian motions.
These representations give a different type of insight into
the models than master equation representations do, and, in
particular, they imply different exact simulation strategies.
These strategies are well known in some parts of the sci-
ences, but less well known in the current context (Anderson
and Kurtz 2011).1

From a computational standpoint the change in perspec-
tive from the master equation to pathwise representations is
useful for a number of reasons. First, the different represen-
tations naturally imply different exact simulation strategies.
Second, and perhaps more importantly, the different repre-
sentations themselves can be utilized to develop new, highly
efficient, computational methods such as finite difference
methods for the approximation of parametric sensitivities,
and multi-level Monte Carlo methods for the approxima-
tion of expectations (Anderson 2012; Anderson and Higham
2012; Anderson et al. 2014). Third, the representations can
be utilized for the rigorous analysis of different computa-
tional strategies and for the algorithmic reduction of models
with multiple scales (Anderson et al. 2011; Anderson and
Koyama 2014; Ball et al. 2006; Kang and Kurtz 2013).

1For an early statement of an exact algorithm for the hybrid case in a
neuroscience context see ((Clay and DeFelice 1983), Equations (2)–
(3)). Strassberg and DeFelice further investigated circumstances under
which it is possible for random microscopic events (single ion chan-
nel state transitions) to generate random macroscopic events (action
potentials) (Strassberg and DeFelice 1993) using an exact simulation
algorithm. Bressloff, Keener, and Newby used an exact algorithm in a
recent study of channel noise dependent action potential generation in
the Morris-Lecar model (Keener and Newby 2011; Newby et al. 2013).
For a detailed introduction to stochastic ion channel models, see (Groff
et al. 2009; Smith and Keizer 2002).

We note that the types of representations and simulation
strategies highlighted here are known in other branches of
the sciences, especially operations research and queueing
theory (Glynn 1989; Haas 2002), and stochastically mod-
eled biochemical processes (Anderson 2007; Anderson and
Kurtz 2011). See also (Riedler and Notarangelo 2013) for
a treatment of such stochastic hybrid systems and some
corresponding approximation algorithms. However, the
representations are not as well known in the context of
computational neuroscience and as a result approximate
methods for the simulation of sample paths including
(a) fixed time step methods, or (b) piecewise constant
propensity algorithms, are still utilized in the literature in
situations where there is no need to make such approxima-
tions. Thus, the main contributions of this paper are: (i)
the formulation of the two pathwise representations for the
specific models under consideration, (ii) a presentation of
the corresponding exact simulation strategies for the dif-
ferent representations, and (iii) a comparison of the error
induced by utilizing an approximate simulation strategy on
the Morris-Lecar model. Moreover, we show how to utilize
the different representations in the development of methods
for parametric sensitivity analysis.

The outline of the paper is as follows. In Section 2 we
heuristically develop two distinct representations and pro-
vide the corresponding numerical methods. In Section 3,
we present the random time change representation as intro-
duced in Section 2 for a particular conductance based
model, the planar Morris-Lecar model, with a single ion
channel treated stochastically. Here, we illustrate the corre-
sponding numerical strategy on this example and provide in
the appendix both XPP and Matlab code for its implementa-
tion. In Section 4, we present an example of a conductance
based model with more than one stochastic gating vari-
able, namely the Morris-Lecar model with both ion channel
types (calcium channels and potassium channels) treated
stochastically. To illustrate both the strong and weak diver-
gence between the exact and approximate algorithms, in
Section 5 we compare trajectories and histograms gener-
ated by the exact algorithms and the piecewise constant
approximate algorithm. In Section 6, we show how to
utilize the different representations presented here in the
development of methods for parametric sensitivity analy-
sis, which is a powerful tool for determining parameters
to which a system output is most responsive. In Section 7,
we provide conclusions and discuss avenues for future
research.

2 Two stochastic representations

The purpose of this section is to heuristically present
two pathwise representations for the relevant models. In
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Section 2.1 we present the random time change repre-
sentation. In Section 2.2 we present a “Gillespie” rep-
resentation, which is analogous to the PDMP formal-
ism discussed in the introduction. In each subsection, we
provide the corresponding numerical simulation strategy.
See (Anderson and Kurtz 2011) for a development of the
representations in the biochemical setting and see (Eithier
and Kurtz 1986; Kurtz 1980, 1981) for a rigorous mathe-
matical development.

2.1 Random time change representations

We begin with an example. Consider a model of a system
that can be in one of two states, A or B , which represent a
“closed” and an “open” ion channel, respectively. We model
the dynamics of the system by assuming that the dwell times
in states A and B are determined by independent exponen-
tial random variables with parameters α > 0 and β > 0,
respectively. A graphical representation for this model is

A
α
!
β

B. (1)

The usual formulation of the stochastic version of this
model proceeds by assuming that the probability that a
closed channel opens in the next increment of time #s is
α#s + o(#s), whereas the probability that an open chan-
nel closes is β#s + o(#s). This type of stochastic model is
often described mathematically by providing the “chemical
master equation,” which for Eq. (1) is simply

d

dt
px0(A, t) = −αpx0(A, t)+ βpx0(B, t)

d

dt
px0(B, t) = −βpx0(B, t)+ αpx0(A, t),

where px0(x, t) is the probability of being in state x ∈
{A,B} at time t given an initial condition of state x0. Note
that the chemical master equation is a linear ODE govern-
ing the dynamical behavior of the probability distribution of
the model, and does not provide a stochastic representation
for a particular realization of the process.

In order to construct such a pathwise representation, let
R1(t) be the number of times the transition A → B has
taken place by time t and, similarly, let R2(t) be the number
of times the transition B → A has taken place by time t .
We let X1(t) ∈ {0, 1} be one if the channel is closed at time
t , and zero otherwise, and let X2(t) = 1 − X1(t) take the
value one if and only if the channel is open at time t . Then,
denoting X(t) = (X1(t), X2(t))

T , we have

X(t) = X(0)+ R1(t)

( −1
1

)
+ R2(t)

(
1

−1

)
.

We now consider how to represent the counting processes
R1, R2 in a useful fashion, and we do so with unit-rate
Poisson processes as our mathematical building blocks. We

recall that a unit-rate Poisson process can be constructed
in the following manner (Anderson and Kurtz 2011). Let
{ei}∞i=1 be independent exponential random variables with a
parameter of one. Then, let τ1 = e1, τ2 = τ1+e2, · · · , τn =
τn−1 + en, etc. The associated unit-rate Poisson process,
Y(s), is simply the counting process determined by the
number of points {τi}∞i=1, that come before s ≥ 0. For
example, if we let “x” denote the points τn in the image
below

then Y(s) = 6.
Let λ : [0,∞) → R≥0. If instead of moving at con-

stant rate, s, along the horizontal axis, we move instead at
rate λ(s), then the number of points observed by time s is
Y

(∫ s
0 λ(r)dr

)
. Further, from basic properties of exponen-

tial random variables, whenever λ(s) > 0 the probability of
seeing a jump within the next small increment of time #s is

P

(
Y

(∫ s+#s

0
λ(r)dr

)
− Y

(∫ s

0
λ(r)dr

)
≥ 1

)
≈ λ(s)#s.

Thus, the propensity for seeing another jump is precisely
λ(s).

Returning to the discussion directly following (1), and
noting that X1(s)+X2(s) = 1 for all time, we note that the
propensities of reactions 1 and 2 are

λ1(X(s)) = αX1(s), λ2(X(s)) = βX2(s).

Combining all of the above implies that we can representR1
and R2 via

R1(t) = Y1

(∫ t

0
αX1(s) ds

)
, R2(t) = Y2

(∫ t

0
βX2(s) ds

)
,

and so a pathwise representation for the stochastic model (1)
is

X(t) = X0 + Y1

(∫ t

0
αX1(s) ds

) ( −1
1

)

+Y2

(∫ t

0
βX2(s) ds

) (
1

−1

)
, (2)

where Y1 and Y2 are independent, unit-rate Poisson pro-
cesses. Suppose now that X1(0) + X2(0) = N ≥ 1. For
example, perhaps we are now modeling the number of open
and closed ion channels out of a total of N , as opposed to
simply considering a single such channel. Suppose further
that the propensity, or rate, at which ion channels are
opening can be modeled as

λ1(t, X(t)) = α(t)X1(t)

and the rate at which they are closing has propensity

λ2(t, X(t)) = β(t)X2(t),
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where α(t), β(t) are non-negative functions of time, per-
haps being voltage dependent. That is, suppose that for each
i ∈ {1, 2}, the conditional probability of seeing the counting
processRi increase in the interval [t, t+h) is λi(t, X(t))h+
o(h). The expression analogous to Eq. (2) is now

X(t) = X0 + Y1

(∫ t

0
α(s)X1(s) ds

) ( −1
1

)

+ Y2

(∫ t

0
β(s)X2(s) ds

) (
1

−1

)
. (3)

Having motivated the time dependent representation with
the simple model above, we turn to the more general con-
text. We now assume a jump model consisting of d chemical
constituents (or ion channel states) undergoing transitions
determined via M > 0 different reaction channels. For
example, in the toy model above, the chemical constituents
were {A,B}, and so d = 2, and the reactions were A → B

and B → A, giving M = 2. We suppose that Xi(t) deter-
mines the value of the ith constituent at time t , so that
X(t) ∈ Zd , and that the propensity function of the kth reac-
tion is λk(t, X(t)). We further suppose that if the kth reac-
tion channel takes place at time t , then the system is updated
according to addition of the reaction vector ζk ∈ Zd ,

X(t) = X(t−) + ζk.

The associated pathwise stochastic representation for this
model is

X(t) = X0 +
∑

k

Yk

(∫ t

0
λk(s, X(s)) ds

)
ζk, (4)

where the Yk are independent unit-rate Poisson processes.
The chemical master equation for this general model is

d

dt
PX0(x, t) =

M∑

k=1

PX0(x − ζk, t)λk(t, x − ζk)

−PX0(x, t)

M∑

k=1

λk(t, x),

where PX0(x, t) is the probability of being in state x ∈ Zd
≥0

at time t ≥ 0 given an initial condition of X0.

When the variable X ∈ Zd represents the randomly fluc-
tuating state of an ion channel in a single compartment con-
ductance based neuronal model, we include the membrane
potential V ∈ R as an additional dynamical variable. In
contrast with neuronal models incorporating Gaussian noise
processes, here we consider the voltage to evolve determin-
istically, conditional on the states of one or more ion chan-
nels. For illustration, suppose we have a single ion channel
type with state variable X. Then, we supplement the path-

wise representation (4) with the solution of a differential
equation obtained fromKirchoff’s current conservation law:

C
dV

dt
= Iapp(t) − IV (V (t)) −

(
d∑

i=1

goi Xi(t)

)
(V (t) − VX) (5)

Here, goi is the conductance of an individual channel when
it is in the i th state, for 1 ≤ i ≤ d . The sum gives the
total conductance associated with the channel represented
by the vector X; the reversal potential for this channel is
the constant VX. The term IV (V ) captures any determinis-
tic voltage-dependent currents due to other channels besides
channel type X, and Iapp represents a time-varying, deter-
ministic applied current. In this case the propensity function
will explicitly be a function of the voltage and we may
replace λk(s, X(s)) in Eq. (4) with λk(V (s), X(s)). If mul-
tiple ion channel types are included in the model then,
provided there are a finite number of types each with a
finite number of individual channels, the vector X ∈ Zd

represents the aggregated channel state. For specific exam-
ples of handling a single or multiple ion channel types, see
Sections 3 and 4, respectively.

2.1.1 Simulation of the representation Eqs. (4)–(5)

The construction of the representation (4) provided above
implies a simulation strategy in which each point of the
Poisson processes Yk , denoted τn above, is generated
sequentially and as needed. The time until the next reaction
that occurs past time T is simply

# = min
k

{
#k :

∫ T+#k

0
λk(s, X(s)) ds = τ kT

}
,

where τ kT is the first point associated with Yk coming after∫ T
0 λk(s, X(s)) ds:

τ kT ≡ inf
{
r >

∫ T

0
λk(s, X(s)) ds : Yk(r)−

Yk

(∫ T

0
λk(s, X(s)) ds

)
= 1

}
.

The reaction that took place is indicated by the index at
which the minimum is achieved. See Anderson (2007) for
more discussion on this topic, including the algorithm pro-
vided below in which Tk will denote the value of the
integrated intensity function

∫ t
0λk(s, X(s)) ds and τk will

denote the first point associated with Yk located after Tk .
All random numbers generated in the algorithm below

are assumed to be independent.
Note that with a probability of one, the index determined

in step 4 of Algorithm 1 is unique at each step. Note also
that the algorithm relies on us being able to calculate a hit-
ting time for each of the Tk(t) =

∫ t
0λk(s, X(s)) ds exactly.
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Of course, in general this is not possible. However, making
use of any reliable integration software will almost always
be sufficient. If the equations for the voltage and/or the
intensity functions can be analytically solved for, as can
happen in the Morris-Lecar model detailed below, then such
numerical integration is unnecessary and efficiencies can be
gained.

2.2 Gillespie representation

There are multiple alternative representations for the general
stochastic process constructed in the previous section, with
a “Gillespie” representation probably being the most use-
ful in the current context. Following (Anderson and Kurtz
2011), we let Y be a unit rate Poisson process and let
{ξi , i = 0, 1, 2 . . . } be independent, uniform (0, 1) random
variables that are independent of Y . Set

λ0(V (s), X(s)) ≡
M∑

k=1

λk(V (s), X(s)),

q0 = 0 and for k ∈ {1, . . . ,M}

qk(s) = λ0(V (s), X(s))−1
k∑

ℓ=1

λℓ(V (s), X(s)),

where X and V satisfy

R0(t) = Y

(∫ t

0
λ0(V (s), X(s)) ds

)
(7)

X(t) = X(0)+
M∑

k=1

ζk

∫ t

0
1

{
ξR0(s−) ∈ [qk−1(s−), qk(s−))

}
dR0(s)

(8)

C
dV

dt
= Iapp(t) − IV (V (t)) −

(
d∑

i=1

goi Xi(t)

)

(V (t) − VX). (9)

Then the stochastic process (X, V ) defined via Eqs. (7)–
(9) is a Markov process that is equivalent to Eq. (4)–(5),
see (Anderson and Kurtz 2011). An intuitive way to under-
stand the above is by noting that R0(t) simply determines
the holding time in each state, whereas Eq. (8) simulates the
embedded discrete time Markov chain (sometimes referred
to as the skeletal chain) in the usual manner. Thus, this is
the representation for the “Gillespie algorithm” (Gillespie
1977) with time dependent propensity functions (Anderson
2007). Note also that this representation is analogous to
the PDMP formalism discussed in the introduction with λ0
playing the role of the rate function that determines when
the next jump takes place, and Eq. 8 implementing the
transitions.

2.2.1 Simulation of the representation Eqs. (7)–(9)

Simulation of Eqs. (7)–(9) is the analog of using Gillespie’s
algorithm in the time-homogeneous case. All random num-
bers generated in the algorithm below are assumed to be
independent.

Note again that the above algorithm relies on us being
able to calculate a hitting time. If the relevant equations can
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be analytically solved for, then such numerical integration
is unnecessary and efficiencies can be gained.

3 Morris-Lecar

As a concrete illustration of the exact stochastic simulation
algorithms, we will consider the well known Morris-Lecar
system (Rinzel and Ermentrout 1989), developed as a model
for oscillations observed in barnacle muscle fibers (Morris
and Lecar 1981). The deterministic equations, which cor-
respond to an appropriate scaling limit of the system, con-
stitute a planar model for the evolution of the membrane
potential v(t) and the fraction of potassium gates, n ∈ [0, 1],
that are in the open or conducting state. In addition to
a hyperpolarizing current carried by the potassium gates,
there is a depolarizing calcium current gated by a rapidly
equilibrating variable m ∈ [0, 1]. While a fully stochastic
treatment of the Morris-Lecar system would include fluc-
tuations in this calcium conductance, for simplicity in this
section we will treat m as a fast, deterministic variable in
the same manner as in the standard fast/slow decomposi-
tion, which we will refer to here as the planar Morris-Lecar
model (Ermentrout and Terman 2010). See Section 4 for a
treatment of the Morris-Lecar system with both the potas-
sium and calcium gates represented as discrete stochastic
processes.

The deterministic or mean field equations for the planar
Morris-Lecar model are:

dv

dt
= f (v, n) = 1

C

(
Iapp − gCam∞(v)(v − vCa)

− gL(v − vL) − gKn(v − vK)) (10)

dn

dt
= g(v, n) = α(v)(1 − n) − β(v)n = (n∞(v) − n)/τ (v) (11)

The kinetics of the potassium channel may be specified
either by the instantaneous time constant and asymptotic tar-
get, τ and n∞, or equivalently by the per capita transition
rates α and β. The terms m∞, α, β, n∞ and τ satisfy

m∞ = 1
2

(
1+ tanh

(
v − va

vb

))
(12)

α(v) = φ cosh(ξ/2)
1+ e2ξ

(13)

β(v) = φ cosh(ξ/2)
1+ e−2ξ (14)

n∞(v) = α(v)/(α(v)+ β(v)) = (1+ tanh ξ) /2 (15)

τ (v) = 1/(α(v)+ β(v)) = 1/ (φ cosh(ξ/2)) (16)

where for convenience we define ξ = (v − vc)/vd . For
definiteness, we adopt values of the parameters

vK = −84, vL = −60, vCa = 120 (17)

Iapp = 100, gK = 8, gL = 2, C = 20 (18)

va = −1.2, vb = 18 (19)

vc = 2, vd = 30,φ = 0.04, gCa = 4.4 (20)

for which the deterministic system has a stable limit cycle.
For smaller values of the applied current (e.g. Iapp = 75) the
system has a stable fixed point, that loses stability through a
subcritical Hopf bifurcation as Iapp increases ((Ermentrout
and Terman 2010), Section 3).

In order to incorporate the effects of random ion chan-
nel gating, we will introduce a finite number of potassium
channels, Ntot, and treat the number of channels in the open
state as a discrete random process, 0 ≤ N(t) ≤ Ntot. In this
simple model, each potassium channel switches between
two states – closed or open – independently of the others,
with voltage-dependent per capita transition rates α and β,
respectively. The entire population conductance ranges from
0 to goKNtot, where goK = gK/Ntot is the single channel con-
ductance, and gK is the maximal whole cell conductance.
For purposes of illustration and simulation we will typically
use Ntot = 40 individual channels.2

Our random variables will therefore be the voltage, V ∈
(−∞,+∞), and the number of open potassium channels,
N ∈ {0, 1, 2, · · · , Ntot}. The number Ntot ∈ N is taken to
be a fixed parameter. We follow the usual capital/lowercase
convention in the stochastic processes literature: N(t) and
V (t) are the random processes and n and v are values
they might take. In the random time change representation
of Section 2.1, the opening and closing of the potassium
channels are driven by two independent, unit rate Poisson
processes, Yopen(t) and Yclose(t).

The evolution of V and N is closely linked. Conditioned
on N having a specific value, say N = n, the evolution of
V obeys a deterministic differential equation,

dV

dt

∣∣∣∣
N=n

= f (V, n). (21)

Although its conditional evolution is deterministic, V is
nevertheless a random variable. Meanwhile, N evolves as a
jump process, i.e. N(t) is piecewise-constant, with transi-
tions N → N ± 1 occurring with intensities that depend on

2Morris and Lecar used a value of gK = 8mmho/cm2 for the spe-
cific potassium conductance, corresponding to 80 picoSiemens (pS)
per square micron (Morris and Lecar 1981). The single channel con-
ductance is determined by the structure of the potassium channel,
and varies somewhat from species to species. However, conductances
around 20 pS are typical (Shingai and Quandt 1986), which would give
a density estimate of roughly 40 channels for a 10 square micron patch
of cell membrane.
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the voltage V . Conditioned on V = v, the transition rates
for N are
N → N + 1 with per capita rate α(v) (22)

(i.e. with net rate α(v) · (Ntot − N)),

N → N − 1 with per capita rate β(v) (23)

(i.e. with net rate β(v) ·N).

Graphically, we may visualize the state space for N in the
following manner:

0
α·Ntot
!
β

1
α·(Ntot−1)

!
2β

2 · · · (k − 1)
α·(Ntot−k+1)

!
kβ

k
α·(Ntot−k)

!
(k+1)β

(k + 1) · · · (Ntot − 1)
α
!

Ntot·β
Ntot,

with the nodes of the above graph being the possible states
for the process N , and the transition intensities located
above and below the transition arrows.

Adopting the random time change representation of
Section 2.1 we write our stochastic Morris-Lecar system as
follows (cf. Eqs. (10)–(11)):

dV

dt
= f (V (t),N(t)) = (24)

= 1
C

(
Iapp − gCam∞(V (t))(V (t) − VCa) − gL(V − VL)

− goKN(t)(V (t) − VK)
)

(25)

N(t) = N(0)− Yclose

(∫ t

0
β(V (s))N(s) ds

)
+

Yopen

(∫ t

0
α(V (s))(Ntot − N(s)) ds

)
.

Supplementary Materials provide sample implementa-
tions of Algorithm 1 for the planar Morris-Lecar equations
in XPP and Matlab, respectively. Figure 1 illustrates the
results of the Matlab implementation.

4 Models with more than one channel type

We present here an example of a conductance based model
with more than one stochastic gating variable. Specifically,
we consider the original Morris-Lecar model, which has
a three dimensional phase space, and we take both the
calcium and potassium channels to be discrete. We include
code in Supplementary Materials, for XPP and Matlab,
respectively, for the implementation of Algorithm 1 for this
model.

4.1 Random Time Change Representation
for the Morris-Lecar Model with Two Stochastic Channel
Types

In Morris and Lecar’s original treatment of voltage oscil-
lations in barnacle muscle fiber (Morris and Lecar 1981)
the calcium gating variable m is included as a dynamical
variable. The full (deterministic) equations have the form:

dv

dt
= F(v, n,m) = 1

C

(
Iapp − gL(v − vL)

− gCam(v − vCa) − gKn(v − vK)) (26)

dn

dt
= G(v, n,m) = αn(v)(1 − n) − βn(v)n

= (n∞(v) − n)/τn(v) (27)

dm

dt
= H(v, n,m) = αm(v)(1 − m) − βm(v)m

= (m∞(v) − m)/τm(v) (28)

Here, rather than setting m to its asymptotic value m∞ =
αm/(αm + βm), we allow the number of calcium gates to
evolve according to Eq. (27). The planar form (Eqs. (10)–
(11)) is obtained by observing that m approaches equilib-
rium significantly more quickly than n and v. Using stan-
dard arguments from singular perturbation theory (Rinzel
and Ermentrout 1989; Terman and Rubin 2002), one may

Fig. 1 Trajectory generated by Algorithm 1 (the random time change
algorithm, (4)–(5)) for the planar Morris-Lecar model. We set Ntot =
40 potassium channels and used a driving current Iapp = 100, which
is above the Hopf bifurcation threshold for the parameters given. Top
Panel: Number of open potassium channels (N), as a function of time.
Second Panel: Voltage (V ), as a function of time. Bottom Panel: Tra-
jectory plotted in the (V,N) plane. Voltage varies along a continuum
while open channel number remains discrete. Red curve: v-nullcline
of the underlying deterministic system, obtained by setting the RHS
of Eq. (10) equal to zero. Green curve: n-nullcline, obtained by setting
the RHS of Eq. (11) equal to zero
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approximate certain aspects of the full system (28)–(27)
by setting m to m∞(v), and replacing F(v, n,m) and
G(v, n,m) with f (v, n) = F(v, n,m∞(v)) and g(v, n) =
G(v, n,m∞(v)), respectively. This reduction to the slow
dynamics leads to the planar model (10)–(11).

To specify the full 3D equations, we introduce ξm =
(v − va)/vb in addition to ξn = (v − vc)/vd already intro-
duced for the 2D model. The variable ξx represents where
the voltage falls along the activation curve for channel type
x, relative to its half-activation point (va for calcium and vc
for potassium) and its slope (reciprocals of vb for calcium
and vd for potassium). The per capita opening rates αm, αn

and closing rates βm, βn for each channel type are given by

αm(v) = φm cosh(ξm/2)
1+ e2ξm

, βm(v) =
φm cosh(ξm/2)
1+ e−2ξm

(29)

αn(v) = φn cosh(ξn/2)
1+ e2ξn

, βn(v) =
φn cosh(ξn/2)
1+ e−2ξn

(30)

with parameters va = −1.2, vb = 18, vc = 2, vd =
30,φm = 0.4,φn = 0.04. The asymptotic open probabili-
ties for calcium and potassium are given, respectively, by the
terms m∞, n∞, and the time constants by τm and τn. These
terms satisfy the relations

m∞(v) = αm(v)/(αm(v)+ βm(v)) = (1+ tanh ξm)/2 (31)

n∞(v) = αn(v)/(αn(v)+ βn(v)) = (1+ tanh ξn) /2 (32)

τm(v) = 1/ (φ cosh(ξm/2)) (33)

τn(v) = 1/ (φ cosh(ξn/2)) . (34)

Assuming a finite population ofMtot calcium gates and Ntot
potassium gates, we have a stochastic hybrid system with
one continuous variable, V (t), and two discrete variables,
M(t) and N(t). The voltage evolves according to the sum
of the applied, leak, calcium, and potassium currents:

dV

dt
= F(V (t), N(t),M(t))

= 1
C

(
Iapp− gL(V (t)− vL)− gCa

M(t)

Mtot
(V (t)− vCa)

−gK
N(t)

Ntot
(V (t) − vK)

)
. (35)

In contrast, the number of open M gates and the number of
open N gates change only by unit increases and decreases,
while remaining constant between such changes. The dis-
crete channel states M(t) and N(t) evolve according to

M(t) = M(0) − YM
close

(∫ t

0
βm(V (s))M(s) ds

)
+

YM
open

(∫ t

0
αm(V (s))(Mtot − M(s)) ds

)
(36)

N(t) = N(0) − YN
close

(∫ t

0
βn(V (s))N(s) ds

)
+

YN
open

(∫ t

0
αn(V (s))(Ntot − N(s)) ds

)
. (37)

Figure 2 shows the results of the Matlab implementa-
tion for the 3D Morris-Lecar system, with both the potas-
sium and calcium channel treated discretely, using Algo-
rithm 1 (the random time change algorithm, (4)–(5). Here
Mtot = Ntot = 40 channels, and the applied current Iapp =
100 puts the deterministic system at a stable limit cycle
close to a Hopf bifurcation.

5 Comparison of the Exact Algorithm with a Piecewise
Constant Propensity Approximation.

Exact versions of the stochastic simulation algorithm for
hybrid ion channel models have been known since at least
the 1980s (Clay and DeFelice 1983). Nevertheless, the
implementation one finds most often used in the literature
is an approximate method in which the per capita reaction
propensities are held fixed between channel events. That is,
in step 3 of Algorithm 1 the integral
∫ t+#k

t
λk(V (s), X(s)) ds

is replaced with

#k λk(V (t), X(t))

leaving the remainder of the algorithm unchanged. Put
another way, one generates the sequence of channel state
jumps using the propensity immediately following the most
recent jump, rather than taking into account the time
dependence of the reaction propensities due to the continu-
ously changing voltage. This piecewise constant propensity
approximation is analogous, in a sense, to the forward Euler
method for the numerical solution of ordinary differential
equations.

Figure 3 shows a direct comparison of pathwise numer-
ical solutions obtained by the exact method provided
in Algorithm 1 and the approximate piecewise constant
method detailed above. In general, the solution of a stochas-
tic differential equation with a given initial condition is
a map from the sample space * to a space of trajecto-
ries. In the present context, the underlying sample space
consists of one independent unit rate Poisson process per
reaction channel. For the planar Morris-Lecar model a point
in * amounts to fixing two Poisson processes, Yopen and
Yclosed, to drive the transitions of the potassium channel.
For the full 3D Morris-Lecar model we have four pro-
cesses, Y1 ≡ YCa,open, Y2 ≡ YCa,closed, Y3 ≡ YK,open
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Fig. 2 Trajectory generated by Algorithm 1 (the random time change
algorithm, (4)–(5)) for the full three-dimensional Morris-Lecar model
(Eqs. (27)–(28)). We set Ntot = 40 potassium channels and Mtot = 40
calcium channels, and used a driving current Iapp = 100, a value above
the Hopf bifurcation threshold of the mean field equations for the
parameters given. Top Left Panel: Number of open calcium channels
(M), as a function of time. Second Left Panel: Number of open potas-
sium channels (N), as a function of time. Third Left Panel: Voltage

(V ), as a function of time. Right Panel: Trajectory plotted in the
(V,M,N) phase space. Voltage varies along a continuum while
the joint channel state remains discrete. Note that the number of
open calcium channels makes frequent excursions between M = 0
and M = 40, which demonstrates that neither a Langevin approx-
imation nor an approximate algorithm such as τ -leaping (Euler’s
method) would provide a good approximation to the dynamics of the
system

and Y4 ≡ YK,closed. In this case the exact algorithm pro-
vides a numerical solution of the map from {Yk}4k=1 ∈
* and initial conditions (M0, N0, V0) to the trajectory
(M(t), N(t), V (t)). The approximate piecewise constant
algorithm gives a map from the same domain to a different
trajectory, (M̃(t), Ñ(t), Ṽ (t)). To make a pathwise compar-
ison for the full Morris-Lecar model, therefore, we fix both

Fig. 3 Comparison of the exact algorithm with the piecewise con-
stant propensity approximation. Blue solid lines denote the solution
(M(t),N(t), V (t)) obtained using the Algorithm 1. Red dashed lines
denote the solution (M̃(t), Ñ (t), Ṽ (t)) obtained using the piecewise
constant approximation. Both algorithms were begun with identical
initial conditions (M0, N0, V0), and driven by the same four Poisson
process streams Y1, · · · , Y4. Note the gradual divergence of the trajec-
tories as differences between the exact and the forward approximate
algorithms accumulate, demonstrating “strong” (or pathwise) diver-
gence of the two methods. The exact and approximate trajectories
diverge as time increases, even though they are driven by identical
noise sources

the initial conditions and the four Poisson processes, and
compare the resulting trajectories.

Several features are evident in Fig. 3. Both algorithms
produce a sequence of noise-dependent voltage spikes,
with similar firing rates. The trajectories (M,N, V ) and
(M̃, Ñ, Ṽ ) initially remain close together, and the timing
of the first spike (taken, e.g., as an upcrossing of V from
negative to positive voltage) is similar for both algorithms.
Over time, however, discrepancies between the trajectories
accumulate. The timing of the second and third spikes is
noticeably different, and before ten spikes have accumulated
the spike trains have become effectively uncorrelated.

Even though trajectories generated by the exact and
approximate algorithms diverge when driven by identical
Poisson processes, the two processes could still generate
sample paths with similar time-dependent or stationary
distributions. That is, even though the two algorithms show
strong divergence, they could still be close in a weak sense.

Given Mtot calcium and Ntot potassium channels, the
density for the hybrid Markov process may be written

ρm,n(v, t) =
1
dv

Pr {M(t) = m,N(t) = n, V ∈ [v, v + dv)} , (38)

and obeys a master equation

∂ρm,n(v, t)

∂t
= −∂

(
F(v, n,m)ρm,n(v, t)

)

∂v
− (αm(v)(Mtot − m)+ βm(v)m+ αn(v)

×(Ntot − n) + βn(v)n) ρm,n(v, t)

+(Mtot − m+ 1)αm(v)ρm−1,n(v, t)

+(m+ 1)βm(v)ρm+1,n(v, t)

+(Ntot − n+ 1)αn(v)ρm,n−1(v, t)

+(n+ 1)βn(v)ρm,n+1(v, t), (39)
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with initial condition ρm,n(v, 0) ≥ 0 given by any (inte-
grable) density such that

∫
v∈R

∑
m,n ρm,n(v, 0) dv ≡ 1, and

boundary conditions ρ → 0 as |v| → ∞ and ρ ≡ 0 for
either m, n < 0 or m > Mtot or n > Ntot.

In contrast, the approximate algorithm with piecewise
constant propensities does not generate a Markov pro-
cess, since the transition probabilities depend on the past
rather than the present values of the voltage component.
Consequently they do not satisfy a master equation. Never-
theless it is plausible that they may have a unique stationary
distribution.

Figure 4 shows pseudocolor plots of the histograms
viewed in the (v, n) plane, i.e. with entries summed over

m, for Algorithm 1 (“Exact”) and the approximate piece-
wise constant (“Approx”) algorithm, with Mtot = Ntot = k

channels for k = 1, 2, 5, 10, 20 and 40. The two algorithms
were run with independent random number streams in the
limit cycle regime (with Iapp = 100) for tmax ≈ 200,000
time units, sampled every 10 time units, which generated
≥ 17, 000 data points per histogram. For k < 5 the differ-
ence in the histograms is obvious at a glance. For k ≥ 10
the histograms appear increasingly similar.

Figure 5 shows bar plots of the histograms with
2,000,000 sample points projected on the voltage axis,
i.e. with entries summed over m and n, for the same data
as in Fig. 4, with Mtot = Ntot = k channels ranging from

Fig. 4 Normalized histograms
of voltage and N for exact and
approximate piecewise constant
algorithms. The V -axis was
partitioned into 100 equal width
bins for each pair of histograms.
The N-axis takes on Ntot + 1
discrete values. Color scale
indicates relative frequency with
which a bin was occupied (dark
= infrequent, lighter=more
frequent)
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Fig. 5 Histograms of voltage
for exact and approximate
piecewise constant algorithms.
The V -axis was partitioned into
100 equal width bins for each
pair of histograms

k = 1 to k = 100. Again, for k ≤ 5, the two algorithms
generate histograms that are clearly distinct. For k ≥ 20
they appear similar, while k = 10 appears to be a borderline
case.

To quantify the similarity of the histograms we calcu-
lated the empirical L1 difference between the histograms
in two ways: first for the full (v, n,m) histograms, and
then for the histograms collapsed to the voltage axis.
Let ρm,n(v) and ρ̃m,n(v) denote the stationary distri-
butions for the exact and the approximate algorithms,
respectively (assuming these exist). To compare the two
distributions we approximate the L1 distance between
them, i.e.

d(ρ, ρ̃) =
∫ vmax

vmin

(
Mtot∑

m=0

Ntot∑

n=0

|ρm,n(v) − ρ̃m,n(v)|
)

dv

where vmin and vmax are chosen so that for all m, n we
have F(vmin, n,m) > 0 and F(vmax, n,m) < 0. It is easy
to see that such values of vmin and vmax must exist, since
F(v, n,m) is a linear and monotonically decreasing func-
tion of v for any fixed pair (n,m), cf. Eq. (28). Therefore,
for any exact simulation algorithm, once the voltage com-
ponent of a trajectory falls in the interval vmin ≤ v ≤ vmax,
it remains in this interval for all time. We approximate the
voltage integral by summing over 100 evenly spaced bins
along the voltage axis. Figure 6, top panel, shows empirical
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Fig. 6 L1 differences between empirical histograms generated by
exact and approximate algorithms. Hj (v, n,m) is the number of sam-
ples for which V ∈ [v, v + #v),N = n and M = m, where
#v is a discretization of the voltage axis into 100 equal width
bins; j = 1 represents an empirical histogram obtained by an
exact algorithm (Algorithm 1), and j = 2 represents an empiri-
cal histogram obtained by a piecewise-constant propensity approx-
imation. Note the normalized L1 difference of two histograms can
range from 0 to 2. Based on 2,000,000 samples for each algo-
rithm. Top: Difference for the full histograms, L1(H1 − H2) ≡∑

v,n,m |H1(v, n,m)−H2(v, n,m)|/#samples. Here v refers to binned
voltage values. The total number of bins is 100MtotNtot. Bottom:
Difference for the corresponding voltage histograms, L1(VH1 −
VH2) ≡ ∑

v |VH1(v) − VH2(v)| /#samples, where VHj (v) =∑
n,m Hj (v, n,m). The total number of bins is 100

estimates of d(ρ, ρ̃) for values ofMtot = Ntot ranging from
1 to 100. The bottom panel shows the histogram for voltage
considered alone.

6 Coupling, variance reduction, and parametric
sensitivities

It is relatively straightforward to derive the exact simulation
strategies from the different representations provided here.
Less obvious, and perhaps even more useful, is the fact that
the random time change formalism also lends itself to the
development of new computational methods that potentially
allow for significantly greater computational speed, with no
loss in accuracy. They do so by providing ways to couple
two processes in order to reduce the variance, and thereby
increase the speed, of different natural estimators.

For an example of a common computational problem
where such a benefit can be had, consider the com-
putation of parametric sensitivities, which is a power-
ful tool in determining parameters to which a system
output is most responsive. Specifically, suppose that the

intensity/propensity functions are dependent on some vector
of parameters θ . For instance, θ may represent a subset of
the system’s mass action kinetics constants, the cell capac-
itance, or the underlying number of channels of each type.
We may wish to know how sensitively a quantity such as the
average firing rate or interspike interval variance depends
on the parameters θ . We then consider a family of models(
V θ , Xθ

)
, parameterized by θ , with stochastic equations

d

dt
V θ (t) = f

(
θ, V θ (t), Xθ (t)

)

Xθ (t) =Xθ
0+

∑

k

Yk

(∫ t

0
λθ
k

(
V θ(s),Xθ(s)

)
ds

)
ζk, (40)

where f is some function, and all other notation is as
before. Some quantities arising in neural models depend
on the entire sample path, such as the mean firing rate
and the interspike interval variance. Let g

(
θ, V θ , Xθ

)
be a

path functional capturing the quantity of interest. In order
to efficiently and accurately evaluate the relative shift in
the expectation of g due to a perturbation of the parameter
vector, we would estimate

s̃ = ϵ−1E
[
g

(
θ ′, V θ ′

, Xθ ′) − g
(
θ, V θ , Xθ

)]

≈ 1
ϵN

N∑

i=1

[
g

(
θ ′, V θ ′

[i], X
θ ′
[i]

)
− g

(
θ, V θ

[i], X
θ
[i]

)]
(41)

where ϵ = ||θ − θ ′|| and where
(
V θ
[i], X

θ
[i]

)
represents

the ith path generated with a parameter choice of θ , and
N is the number of sample paths computed for the esti-
mation. That is, we would use a finite difference and
Monte Carlo sampling to approximate the change in the
expectation.

If the paths (V θ ′
[i], X

θ ′
[i]) and (V θ

[i], X
θ
[i]) are generated

independently, then the variance of the estimator (41) for
s̃ is O(N−1ϵ−2), and the standard deviation of the estima-
tor is O(N−1/2ϵ−1). This implies that in order to reduce
the confidence interval of the estimator to a target level of
ρ > 0, we require

N−1/2ϵ−1 " ρ =⇒ N # ϵ−2ρ−2,

which can be prohibitive. Reducing the variance of the
estimator can be achieved by coupling the processes(
V θ ′
[i], X

θ ′
[i]

)
and

(
V θ
[i], X

θ
[i]

)
, so that they are correlated,

by constructing them on the same probability space.
The representations we present here lead rather directly
to schemes for reducing the variance of the estimator. We
discuss different possibilities.

1. The common random number (CRN) method. The
CRN method simulates both processes according to the
Gillespie representation (7)–(9) with the same Pois-
son process Y and the same stream of uniform random

Author's personal copy



J Comput Neurosci (2015) 38:67–82 79

variables {ξi}. In terms of implementation, one sim-
ply reuses the same two streams of uniform random
variables in Algorithm 2 for both processes.

2. The common reaction path method (CRP). The CRP
method simulates both processes according to the ran-
dom time change representation with the same Poisson
processes Yk . In terms of implementation, one sim-
ply makes one stream of uniform random variables for
each reaction channel, and then uses these streams for
the simulation of both processes. See (Rathinam et al.
2010), where this method was introduced in the context
of biochemical models.

3. The coupled finite difference method (CFD). The
CFD method utilizes a “split coupling” introduced in
(Anderson 2012). Specifically, it splits the counting
process for each of the reaction channels into three
pieces: one counting process that is shared by Xθ and
Xθ ′

(and has propensity equal to the minimum of their
respective intensities for that reaction channel), one
that only accounts for the jumps of Xθ , and one that
only accounts for the jumps of Xθ ′

. Letting a ∧ b =
min{a, b}, the precise coupling is

Xθ ′
(t) = Xθ ′

0 +
∑

k

Yk,1

(∫ t

0
mk(θ, θ

′, s) ds
)

ζk

+
∑

k

Yk,2

(∫ t

0
λθ ′
k (V

θ ′
(s), Xθ ′

(s)) − mk(θ, θ
′, s) ds

)
ζk

Xθ (t) = Xθ (t) +
∑

k

Yk,1

(∫ t

0
mk(θ, θ

′, s) ds
)

ζk (42)

+
∑

k

Yk,3

(∫ t

0
λθ
k (V

θ (s), Xθ (s)) − mk(θ, θ
′, s) ds

)
ζk,

where

mk(θ, θ
′, s) ≡ λθ

k(V
θ (s), Xθ (s))∧λθ ′

k (V
θ ′
(s), Xθ ′

(s)),

and where {Yk,1, Yk,2, Yk,3} are independent unit-rate
Poisson processes. Implementation is then carried out
by Algorithm 1 in the obvious manner.

While the different representations provided in this
paper imply different exact simulation strategies (i.e.
Algorithms 1 and 2), those strategies still produce sta-
tistically equivalent paths. This is not the case for the
methods for parametric sensitivities provided above. To
be precise, each of the methods constructs a coupled pair
of processes ((V θ , Xθ ), (V θ ′

, Xθ ′
)), and the marginal pro-

cesses (V θ , Xθ ) and (V θ ′
, Xθ ′

) are all statistically equiv-
alent no matter the method used. However, the covari-
ance Cov((V θ (t), Xθ (t)), (V θ ′

(t), Xθ ′
(t))) can be drasti-

cally different. This is important, since it is variance reduc-
tion we are after, and for any component Xj ,

Var

(
Xθ
j (t) − Xθ ′

j (t)
)
= Var

(
Xθ
j (t)

)
+Var

(
Xθ ′
j (t)

)
− 2Cov

(
Xθ
j (t),X

θ ′
j

)
.

Thus, minimizing variance is equivalent to maximizing
covariance. Typically, the CRN method does the worst job
of maximizing the covariance, even though it is the most
widely used method (Srivastava et al. 2013). The CFD
method with the split coupling procedure typically does
the best job of maximizing the covariance, though exam-
ples exist in which the CRP method is the most efficient
(Anderson 2012; Anderson and Koyama 2014; Srivastava
et al. 2013).

7 Discussion

We have provided two general representations for stochastic
ion channel kinetics, one based on the random time change
formalism, and one extending Gillespie’s algorithm to
the case of ion channels driven by time-varying mem-
brane potential. These representations are known in other
branches of science, but less so in the neuroscience commu-
nity. We believe that the random time change representation
(Algorithm 1, (4)–(5)) will be particularly useful to the
computational neuroscience community as it allows for
generalizations of computational methods developed in the
context of biochemistry, in which the propensities depend
upon the state of the jump process only. For example,
variance reduction strategies for the efficient computation
of first and second order sensitivities (Anderson 2012;
Anderson and Wolf 2012; Rathinam et al. 2010), as dis-
cussed in Section 6, and for the efficient computation of
expectations using multi-level Monte Carlo (Anderson and
Higham 2012; Giles 2008) now become feasible.

The random time change approach avoids several
approximations that are commonly found in the litera-
ture. In simulation algorithms based on a fixed time step
chemical Langevin approach, it is necessary to assume
that the increments in channel state are approximately
Gaussian distributed over an appropriate time interval
(Fox and Yan-nan 1994; Goldwyn et al. 2011; Goldwyn
and Shea-Brown 2011; Mino et al. 2002; White et al.
1998). However, in exact simulations with small membrane
patches corresponding to Mtot = 40 calcium channels,
the exact algorithm routinely visits the states M(t) =
0 and M(t) = 40, for which the Gaussian increment
approximation is invalid regardless of time step size. The
main alternative algorithm typically found in the literature
is the piecewise constant propensity or approximate for-
ward algorithm (Fisch et al. 2012; Kispersky and White
2008; Schwalger et al. 2010). However, this algorithm
ignores changes to membrane potential during the inter-
vals between channel state changes. As the sensitivity of
ion channel opening and closing to voltage is fundamental
to the neurophysiology of cellular excitability, these algo-
rithms are not appropriate unless the time between openings
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and closing is especially small. The exact algorithm (Clay
and DeFelice 1983; Keener and Newby 2011; Newby et al.
2013) is straightforward to implement and avoids these
approximations and pitfalls.

Our study restricts attention to the suprathreshold regime
of the Morris-Lecar model, in which the applied current
(here, Iapp = 100) puts the deterministic system well above
the Hopf bifurcation marking the onset of oscillations. In
this regime, spiking is not the result of noise-facilitated
release, as it is in the subthreshold or excitable regime.
Bressloff, Keener and Newby used eigenfunction expansion
methods, path integrals, and the theory of large deviations to
study spike initiation as a noise facilitated escape problem
in the excitable regime, as well as to incorporate synaptic
currents into a stochastic network model; they use versions
of the exact algorithm presented in this paper (Bressloff
and Newby 2014b; Newby et al. 2013). Interestingly, these
authors find that the usual separation-of-time scales picture
breaks down. That is, the firing rate obtained by 1D Kramers
rate theory when the slow recovery variable (fraction of
open potassium gates) is taken to be fixed does not match
that obtained by direct simulation with the exact algorithm.
Moreover, by considering a maximum likelihood approach
to the 2D escape problem, the authors show that, coun-
terintuitively, spontaneous closure of potassium channels
contributes more significantly to noise induced escape than
spontaneous opening of sodium channels, as might naively
have been expected.

The algorithms presented here are broadly applicable
beyond the effects of channel noise on the regularity of
action potential firing in a single compartment neuron
model. Exact simulation of hybrid stochastic models have
been used, for instance, to study spontaneous dendritic
NMDA spikes (Bressloff and Newby 2014a), intracellular
growth of the T7 bacteriophage (Alfonsi et al. 2005), and
hybrid stochastic network models taking into account piece-
wise deterministic synaptic currents (Bressloff and Newby
2013). This latter work represents a significant extension of
the neural master equation approach to stochastic popula-
tion models (Bressloff 2009; Buice et al. 2010).

For any simulation algorithm, it is reasonable to ask
about the growth of complexity of the algorithm as the
underlying stochastic model is enriched. For example, the
natural jump Markov interpretation of Hodgkin and Hux-
ley’s model for the sodium channel comprises eight distinct
states with twenty different state-to-state transitions, each
driven by an independent Poisson process in the random
time change representation. Recent investigations of sodium
channel kinetics have led neurophysiologists to formulate
models with as many as 26 distinct states connected by
72 transitions (Milescu et al. 2010). While the random
time change representation extends naturally to such scenar-
ios, it may also be fruitful to combine it with complexity

reduction methods such as the stochastic shielding algo-
rithm introduced by Schmandt and Galán (Schmandt and
Galán 2012), and analyzed by Schmidt and Thomas
(Schmidt and Thomas 2014). For example, of the twenty
independent Poisson processes driving a discrete Markov
model of the Hodgkin-Huxley sodium channel, only four of
the processes directly affect the conductance of the channel;
fluctuations associated with the remaining sixteen Poisson
processes may be ignored with negligible loss of accuracy
in the first and second moments of the channel occupancy.
Similarly, for the 26 state sodium channel model proposed
in (Milescu et al. 2010), all but 12 of the 72 Poisson pro-
cesses representing state-to-state transitions can be replaced
by their expected values. Analysis of algorithms combining
stochastic shielding and the random time change framework
are a promising direction for future research.

Acknowledgments Anderson was supported by NSF grant DMS-
1318832 and Army Research Office grant W911NF-14-1-0401.
Ermentrout was supported by NSF grant DMS-1219754. Thomas was
supported by NSF grants EF-1038677, DMS-1010434, and DMS-
1413770, by a grant from the Simons Foundation (#259837), and by
the Council for the International Exchange of Scholars (CIES). We
gratefully acknowledge the Mathematical Biosciences Institute (MBI,
supported by NSF grant DMS 0931642) at The Ohio State Univer-
sity for hosting a workshop at which this research was initiated. The
authors thank David Friel and Casey Bennett for helpful discussions
and testing of the algorithms.

Conflict of interest The authors declare that they have no conflict
of interest.

References

Alfonsi, A., Cancès, E., Turinici, G., Di Ventura, B., Huisinga, W.
(2005). Adaptive simulation of hybrid stochastic and determinis-
tic models for biochemical systems. In ESAIM: Proceedings (Vol.
14, pp. 1–13). EDP Sciences.

Anderson, D.F. (2007). A modified next reaction method for simulat-
ing chemical systems with time dependent propensities and delays.
Journal of Chemical Physics, 127(21), 214107.

Anderson, D.F. (2012). An efficient finite difference method for
parameter sensitivities of continuous time Markov chains. SIAM
Journal on Numerical Analysis, 50(5), 2237–2258.

Anderson, D.F., Ganguly, A., Kurtz, T.G. (2011). Error analysis of
tau-leap simulation methods. Annals of Applied Probability, 21(6),
2226–2262.

Anderson, D.F., & Higham, D.J. (2012). Multi-level Monte Carlo for
continuous time Markov chains, with applications in biochemical
kinetics. SIAM: Multiscale Modeling and Simulation, 10(1), 146–
179.

Anderson, D.F., Higham, D.J., Sun, Y. (2014). Complexity analysis of
multilevel monte carlo tau-leaping. Submitted.

Anderson, D.F., & Koyama, M. (2014). An asymptotic relationship
between coupling methods for stochastically modeled population
processes. Accepted for publication to IMA Journal of Numerical
Analysis.

Author's personal copy



J Comput Neurosci (2015) 38:67–82 81

Anderson, D.F., & Kurtz, T.G. (2011). Design and analysis of
biomolecular circuits, chapter 1. Continuous Time Markov chain
models for chemical reaction networks. Springer.

Anderson, D.F., & Wolf, E.S. (2012). A finite difference method for
estimating second order parameter sensitivities of discrete stochas-
tic chemical reaction networks. Journal of Chemical Physics,
137(22), 224112.

Ball, K., Kurtz, T.G., Popovic, L., Rempala, G. (2006). Asymp-
totic analysis of multiscale approximations to reaction networks.
Annals of Applied Probability, 16(4), 1925–1961.

Bressloff, P.C. (2009). Stochastic neural field theory and the system-
size expansion. SIAM Journal on Applied Mathematics, 70(5),
1488-1521.

Bressloff, P.C., & Newby, J.M. (2013). Metastability in a stochastic
neural network modeled as a velocity jump Markov process. SIAM
Journal on Applied Dynamical Systems, 12(3), 1394–1435.

Bressloff, P.C., & Newby, J.M. (2014a). Stochastic hybrid model of
spontaneous dendritic NMDA spikes. Physical Biology, 11(1),
016006.

Bressloff, P.C., & Newby, J.M. (2014b). Path integrals and large devi-
ations in stochastic hybrid systems. Physical Review E, 89(4),
042701.

Buckwar, E., & Riedler, M.G. (2011). An exact stochastic hybrid
model of excitable membranes including spatio-temporal evolu-
tion. Journal of Mathematical Biology, 63, 1051–1093.

Buice, M.A., Cowan, J.D., Chow, C.C. (2010). Systematic fluctu-
ation expansion for neural network activity equations. Neural
Computation, 22(2), 377-426.

Cao, Y., Gillespie, D.T., Petzold, L.R. (2006). Efficient step size selec-
tion for the tau-leaping simulation method. Journal of Chemical
Physics, 124(4), 044109.

Clay, J.R., & DeFelice, L.J. (1983). Relationship between membrane
excitability and single channel open-close kinetics. Biophysical
Journal, 42(2), 151–7.

Colquhoun, D., & Hawkes, A.G. (1983). Single-channel recording,
chapter the principles of the stochastic interpretation of ion-
channel mechanisms. New York: Plenum Press.

Davis, M.H.A. (1984). Piecewise-deterministic markov processes:
a general class of non-diffusion stochastic models. Jour-
nal of the Royal Statistical Society. Series B, 46(3), 353–
388.

Dorval Jr., A.D., & White, J.A. (2005). Channel noise is essential
for perithreshold oscillations in entorhinal stellate neurons. The
Journal of Neuroscience, 25(43), 10025–10028.

Earnshaw, B.A., & Keener, J.P. (2010). Invariant manifolds of
binomial-like nonautonomous master equations. SIAM Journal
Applied Dynamical Systems, 9(2), 568–588.

Ermentrout, G.B., & Terman, D.H. (2010). Foundations of mathemat-
ical neuroscience. Springer.

Ethier, S.N., & Kurtz, T.G. (1986). Markov processes: characteriza-
tion and convergence. New York: John Wiley.

Fisch, K., Schwalger, T., Lindner, B., Herz, A.V.M., Benda, J. (2012).
Channel noise from both slow adaptation currents and fast cur-
rents is required to explain spike-response variability in a sensory
neuron. Journal of Neuroscience, 32(48), 17332–44.

Fox, R.F., & Yan-nan, L. (1994). Emergent collective behavior
in large numbers of globally coupled independently stochas-
tic ion channels. Physical Review E Statistical Physics Plas-
mas Fluids Related Interdisciplinary Topics, 49(4), 3421–
3431.

Giles, M.B. (2008). Multilevel Monte Carlo path simulation. Opera-
tions Research, 56, 607–617.

Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemi-
cal reactions. Journal of Physical Chemistry, 81, 2340–2361.

Gillespie, D.T. (2007). Stochastic simulation of chemical kinetics.
Annual Review of Physical Chemistry, 58, 35–55.

Glynn, P.W. (1989). A GSMP formalism for discrete event systems.
Proceedings of the IEEE, 77(1), 14–23.

Goldwyn, J.H., Imennov, N.S., Famulare, M., Shea-Brown, E. (2011).
Stochastic differential equation models for ion channel noise in
hodgkin-huxley neurons. Physical Review. E, Statistical, Nonlin-
ear, and Soft Matter Physics, 83(4 Pt 1), 041908.

Goldwyn, J.H., & Shea-Brown, E. (2011). The what and where of
adding channel noise to the Hodgkin-Huxley equations. PLoS
Computational Biology, 7(11), e1002247.

Groff, J.R., DeRemigio, H., Smith, G.D. (2009) Markov chain models
of ion channels and calcium release sites. In Stochastic methods in
neuroscience (pp. 29–64).

Haas, P.J. (2002). Stochastic petri nets: modelling stability, simulation,
1st edn. New York: Springer.

Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of
membrane current and its application to conduction and excitation
in nerve. Journal of Physiology, 117, 500–544.

Kang, H.W., & Kurtz, T.G. (2013). Separation of time-scales and
model reduction for stochastic reaction models. Annals of Applied
Probability, 23, 529–583.

Keener, J.P., & Newby, J.M. (2011). Perturbation analysis of sponta-
neous action potential initiation by stochastic ion channels. Phys-
ical Review. E, Statistical, Nonlinear, and Soft Matter Physics,
84(1-1), 011918.

Kispersky, T., & White, J.A. (2008). Stochastic models of ion channel
gating. Scholarpedia, 3(1), 1327.

Kurtz, T.G. (1980). Representations of markov processes as mul-
tiparameter time changes. Annals of Probability, 8(4), 682–
715.

Kurtz, T.G. (1981). Approximation of population processes, CBMS-
NSF Reg. Conf. Series in Appl. Math.: 36, SIAM.

Laing, C., & Lord, G.J. (Eds.) (2010). Stochastic methods in neuro-
science. Oxford University Press.

Lee, C., & Othmer, H. (2010). A multi-time-scale analysis of
chemical reaction networks: I. deterministic systems. Journal
of Mathematical Biology, 60, 387–450. doi:10.1007/s00285-009-
0269-4.

Milescu, L.S., Yamanishi, T., Ptak, K., Smith, J.C. (2010). Kinetic
properties and functional dynamics of sodium channels during
repetitive spiking in a slow pacemaker neuron. Journal of Neuro-
science, 30(36), 12113–27.

Mino, H., Rubinstein, J.T., White, J.A. (2002). Comparison of algo-
rithms for the simulation of action potentials with stochastic
sodium channels. Annals of Biomedical Engineering, 30(4), 578–
87.

Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle
giant muscle fiber. Biophysical Journal, 35(1), 193–213.

Newby, J.M., Bressloff, P.C., Keener, J.P. (2013). Breakdown of fast-
slow analysis in an excitable system with channel noise. Physical
Review Letters, 111(12), 128101.

Pakdaman, K., Thieullen, M., Wainrib, G. (2010). Fluid limit the-
orems for stochastic hybrid systems with application to neu-
ron models. Advances in Applied Probability, 42(3), 761–
794.

Pakdaman, K., Thieullen, M., Wainrib, G. (2012). Asymptotic
expansion and central limit theorem for multiscale piecewise-
deterministic Markov processes. Stochastic Proceedings of
Applied, 122, 2292–2318.

Rathinam, M., Sheppard, P.W., Khammash, M. (2010). Efficient
computation of parameter sensitivities of discrete stochastic
chemical reaction networks. Journal of Chemical Physics, 132,
034103.

Author's personal copy

http://dx.doi.org/10.1007/s00285-009-0269-4
http://dx.doi.org/10.1007/s00285-009-0269-4


82 J Comput Neurosci (2015) 38:67–82

Riedler, M., & Notarangelo, G. (2013). Strong Error Analysis for
the /-Method for Stochastic Hybrid Systems arXiv preprint.
arXiv:1310.0392.

Riedler, M.G., Thieullen, M., Wainrib, G. (2012). Limit theorems for
infinite-dimensional piecewise deterministic Markov processes.
Applications to stochastic excitable membrane models. Electronic
Journal of Probability, 17(55), 1-48.

Rinzel, J., & Ermentrout, G.B. (1989). Analysis of neural excitabil-
ity and oscillations. In C. Koch, & I. Segev (Eds.), Methods in
neuronal modeling, 2nd edn. MIT Press.

Terman, D., & Rubin, J. (2002). Geometric singular pertubation
analysis of neuronal dynamics. In B. Fiedler (Ed.), Handbook
of dynamical systems, vol. 2: towards applications (pp. 93–
146). Elsevier.

Schmandt, N.T., & Galán, R.F. (2012). Stochastic-shielding approxi-
mation of Markov chains and its application to efficiently simulate
random ion-channel gating. Physical Review Letters, 109(11),
118101.

Schmidt, D.R., & Thomas, P.J. (2014). Measuring edge importance:
a quantitative analysis of the stochastic shielding approximation
for random processes on graphs. The Journal of Mathematical
Neuroscience, 4(1), 6.

Schwalger, T., Fisch, K., Benda, J.an., Lindner, B. (2010). How noisy
adaptation of neurons shapes interspike interval histograms and
correlations. PLoS Computers in Biology, 6(12), e1001026.

Shingai, R., & Quandt, F.N. (1986). Single inward rectifier channels in
horizontal cells. Brain Research, 369(1-2), 65–74.

Skaugen, E., & Walløe, L. (1979). Firing behaviour in a stochastic
nerve membrane model based upon the Hodgkin-Huxley equa-
tions. Acta Physiologica Scandinavica, 107(4), 343–63.

Smith, G.D., & Keizer, J. (2002). Modeling the stochastic gating of
ion channels. In Computational cell biology (pp. 285–319). New
York: Springer.

Srivastava, R., Anderson, D.F., Rawlings, J.B. (2013). Comparison of
finite difference based methods to obtain sensitivities of stochas-
tic chemical kinetic models. Journal of Chemical Physics, 138(7),
074110.

Strassberg, A.F., & DeFelice, L.J. (1993). Limitations of the Hodgkin-
Huxley formalism: Effects of single channel kinetics on transme-
brane voltage dynamics. Neural Computation, 5, 843–855.

Wainrib, G., Thieullen, M., Pakdaman, K. (2012). Reduction of
stochastic conductance-based neuron models with time-scales sep-
aration. Journal of Computational Neuroscience, 32, 327–346.

White, J.A., Chow, C.C., Ritt, J., Soto-Trevino, C., Kopell, N.
(1998). Synchronization and oscillatory dynamics in heteroge-
neous, mutually inhibited neurons. Journal of Computational
Neuroscience, 5, 5–16.

White, J.A., Rubinstein, J.T., Kay, A.R. (2000). Channel noise in
neurons. Trends in Neurosciences, 23, 131–137.

Wilkinson, D.J. (2011). Stochastic modelling for systems biology.
Chapman & Hall/CRC.

Author's personal copy

http://arxiv.org/abs/hep-th/1310.0392

	Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics
	Abstract
	Introduction
	Two stochastic representations
	Random time change representations
	Simulation of the representation Eqs. (4)–(5)

	Gillespie representation
	Simulation of the representation Eqs. (7)–(9)


	Morris-Lecar
	Models with more than one channel type
	Random Time Change Representation for the Morris-Lecar Model with Two Stochastic Channel Types

	Comparison of the Exact Algorithm with a Piecewise Constant Propensity Approximation.
	Coupling, variance reduction, and parametric sensitivities
	Discussion
	Acknowledgments
	Conflict of interest
	References


