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What are Foci?

Apollonius of Perga introduced foci of ellipse
and hyperbola (3rd century B.C.E.)

Pappus found the focus of a parabola (4th cen-
tury C.E.)

Kepler named foci and developed their proper-
ties (17th century)

Pliicker (1832) defined foci of higher order
curves

Plicker Formulation
~ is an algebraic curve, given by P(x.y) = 0
where P is a polynomial of degree n (and as-
sume real coefficients)

Example: The circle (z—a)24(y—b)2-12 =0
We think of R2 ¢ C2 c CP?
Replace P(x,y) with homogeneous polynomial

Plx,y.z] = 0 and extend to a complex curve I
in CP2

Example: (r—az)2 4 (y—b2)2 —1r222 =0
Note that every circle passes through the
“circular points” [1,i,0] and [1,—i,0].

A line through a circular point tangent to I is
an “isotropic tangent" , with equation
r+iy=(a+ib)z (or x —iy = (a —ib)z)

The line meets the "real” plane at the focus

(a,b)

In the case of the circle, this actually gives the
center of the circle.
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The example of the circle is special, because
the isotropic tangent is actually tangent at the
circular point. This kind of focus is special and
may be called a singular focus. A real curve
which passes through the circular points is a
“circular curve” .

A quadratic curve which is not a circle is not
circular, so it has ordinary foci.

A curve I has class m if there are m tangent
lines from an arbitrary point P to it. Such a
curve will have at most m foci, a circular curve
will have fewer.

Example 1: The k-ellipse
Given points Py, P, .. .. P, in the plane and a
positive number r, the set of points the sum of
whose distances from the F; is r is called a k-
ellipse or poly-ellipse. They were first studied
by Tschirnhaus (1695).

The k-ellipse is given by a polynomial of degree

2% if k is odd or degree 2"‘—( ) if k is even.

'(',
k2
The points F; are foci (though in general there
are other foci).

The Zariski closure of the 3-ellips is an algebraic curve of degree sight

The 3-ellipse

\

The innermost curve is convex
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Non-smooth example A 3-ellipse with 8 (of nine) foci

Example 2: Lemniscates The lemniscate is given by a polynomial of de-
gree 2k If
A.
Given points Py, Po, ..., P. in the plane and a P(z)= H(.z — B) = u(z,y) +iv(e.y)
positive number r, the set of points the prod- 1
uct of whose distances from the P, is r is called then the equation is u? 4 v2 = r2.

a (Polynomial) lemniscate or, when k = 2, a
Cassini oval.

The points F; are foci (though in general there
are other foci).

Lemniscates can be anything E.T.: Phone Home!

&)
rd-shape. (b) Resonstructed shepe using 7 foct and J-pass of
519331.2 and fmege dimensim 1 256256,

(a) An
thirming

LEMNISCATE TRANSFORM: A NEW EFFICIENT TECHNIQUE des cassiniennes alien ... par Alain Esculier

FUR SHAPE CODING AND REPRESENTATION
Amlan Kundu
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Example 3: Siebeck’s Theorem
Theorem. The zeros of the function

p

F(Z)= Zl:
are the foci of the curve of class p— 1 which
touches each line segment (Z;, Z;) in a point
dividing the line segment in the ratio m; : m;.
In particular, the critical points of a polynomial
P(Z) of degree p are the foci of a curve of class
p—1 which is tangent to the lines joining pairs
of roots of P.

"y

T2

BAcher-Grace Theorem

If P(z) = 2% 4 as22 + ay2 + ag has roots Ry,
R, and Ra, then its derivative P'(z) = 322 +
2asz 4+ aq has its roots at the foci of an ellipse
tangent at the midpoints to the three sides of
the triangle with vertices at Ry, R5, and R3.

Class Three

A curve of class three has the property that
there are three tangent lines from any point to
the curve. Such a curve must look something
like this:

Siebeck's theorem says that given four points
the resulting curve of class three will be tan-
gent to the line joining any two of the points.
Here is a sample picture of this phenomenon:

Za

m

F(zy=% "L 7 .z
X7-7 Z3 !

F(c)y=0

The corners of the quadrilateral are the poles

of
4 "

F(2) =% -
gz—/,

and the foci are the zeroes.

Application: View
i mn; _i m; (7 7.)
TZ-Zi TIZ-Z? J
as velocity vector field of an incompressible
fluid flow. Then Z; is a source of strength
m; (or sink if m; < 0), and the foci are the
stagnation points of the flow.

Hassan Aref
JOURNAL OF MATHEMATICAL PHYSICS 48 065401 (300T)




Example 4: Non-Euclidean polynomials

A non-Euclidean polynomial (Walsh, 1952),is
a function of the form

n 7 — A
B(Z) = A = Al=1, |4 <1
Ell—,-lA.A

This is an n-to-one map from the closed unit
disc D to itself (a finite Blaschke product.)
with n zeros in the interior DD, and has modulus
unity on C': |Z| = 1.
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Theorem. Let B(Z) = A} /. I\ =1,

|Ag| < 1.n > 2 be a non-Euclidean polynomial,
and let ~ be the curve in D which is the en-
velope of the non-Euclidean geodesics (with
respect to the Poincaré metric) joining pairs of
points W;, W; on C satisfying B(W;) = B(1V;).
Then ~ is (part of) an algebraic curve whose
real foci are the critical points of B(Z) in D
together with their inverses with respect to .

n =4 example

In the case n = 3 the curve is a non-Euclidean
ellipse (together with its reflected image). The
sum of the hyperbolic distances from the two
foci to a point on the curve is constant. It is
inscribed in ideal triangles whose vertices W;
satisfy B(IWq) = B(W5) = B(WW3).

The equation for this curve, after a Mobius
transformation, can be given as

. 422 4 ;;2

st @+ 41 =0

(8%

It is a curve of class 8 and genus 1.

The hyperbolic ellipse

DX




Example 5: Eigenvalues

The field of values W{(A) of an n xn matrix A
is defined by

W(A) = {a* Az : ||z] = 1}

= (Z2% 0 al # 0)

It is a compact convex subset of the plane con-
taining the eigenvalues of A. (Toeplitz - Haus-
dorff)
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Kippenhann’s Theorem

Theorem. The boundary I' of the numerical
range of an n x n matrix A is the convex hull
of the curve whose equation in line coordinates
(u.v.w) is given by

dS(u, v, w) = det(ul + v K +wl) =0

where A= H+iK and H and K are Hermitian
matrices. Thus, I is the dual curve of the
curve ®(u.v,w) =0

Corollary. The eigenvalues of A are the foci
of the curve I'.

Proof: The line ax 4 by + ¢z = 0 is tangent to
I if and only if ¢(a,b,¢) = 0. The isotropic line
>+ iy = (zg)z is tangent to I iff

det(H + iK — z0I) = det(A — 20]) =0

Eigenvalues (red) and I (solid)
for 100 x 100 grcar matrix

Note: The dual curve ¢(x.y.z) = 0 is given
by a determinant; it is an " RZ curve”, impor-
tant in applications to nonlinear optimization.
The solution by Helton and Vinnikov of the
Lax Conjecture is the converse: the dual of an
RZ curve of degree n is the boundary curve for
the numerical range of an n x n matrix.

An RZ curve of order n has the property that
every line through the origin meets the curve
in n real points.

Example of an RZ curve

gl v) = (0 & Gu b o? =52 4 LA{du = 1T) =0

The dual curve

110256" + ' (535 + 3T + 7930007 ) + o[~ 2087 — 136280 - 7326

S80S0 e 10T e (4 1T - 12— 68 48 e 3560T) w0




RZ curves and their duals
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The dual of this RZ curve is not
convex, but its convex hull is a
numerical range

hyperbolie ellipse

Example 6: Schwarz Reflection

Let I be a curve in {2 given by the algebraic
equation ¢(x.y) = 0. (Edouard) Study defined
reflection of points across IC as follows:

If P = (x1,y1) is any point in the plane, we
identify it with the point in CP2 with homo-
geneous coordinates [rq.yq1.1]. There are two
lines, [y and B given in homogeneous coor-
dinates [X,Y.Z] by

Ry X4iY = (e1+in)Z
By : X—iY = (z1—iy1)Z

Let (X5.Y5) be a point in C2 lying on the line
Iy and satisfying the equation (X5, Y5) = 0.
There will be n choices of such a point if ¢ has
degree n.
(This reveals the fact that Schwarz reflection
is only locally defined in a 1 — 1 manner.)

Now take the line
By: X —iY = (Xo —iY2)Z
Let @ = (r3,y3) be the point of intersection

of B, with the real plane. @Q = R(P) is the
Schwarz reflection of P.

From this description we see: Schwarz reflec-
tion fails to be 1 to n precisely at the foci
of I'. For instance, Schwarz reflection through
an ellipse gives a two-fold covering of the plane
branched at the foci.
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The Schwarz function of T is the analytic func-
tion such that the curve is the analytic function
locally defined (near a given point (xg.yg) € M)
by z = S(=).

S(z) = =z for the real line y =0

S(2) = r2/= for the circle 22 4 y2 = r2

Schwarzian reflection in I is locally character-
ized as the unique antiholomorphic map R fix-
ing points of .

It is given by the formula R(z) = S(z) for =
near zg = g -+ 0.

The branch points of S(z) are the foci of ~.

Application: Quadrature Domains

2 is a quadrature domain If there are finitely
many points aj.as, ..., am € §2 and coefficients
ke such that for any integrable analytic func-
tion f

m rg—1

[’,rwm =3 e

k=1 j=0

Theorem: [Davis, Aharonov - Shapiro] A bounded
domain €2 is a quadrature domain if and only

if the Schwartz function is meromorphic on all
of €.

Theorem: Let N C C be the numerical range
of an n x n complex matrix A. Assume all
eigenvalues of A lie in the interior of A/, and
the boundary of A is a nonsingular, algebraic
curve v. Assume also that 0 € A'. Then 471,
obtained by inversion in the plane, bounds a
quadrature domain D.

Why? Inversion carries the ordinary foci of 4
to the foci of v~ 1 (and vice-versa). Since -
contains all of its foci, its inverse contains no
foci! So S(z) has no branch points inside 1.

Example: The ellipse is not a quadrature do-
main. But the inverted ellipse is a quadrature
domain: the Neumann quadrature domain, the
first historical example of such a region.

Conclusion: Foci are interesting

four foci




The End
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