Math 423 Homework 9

- 1. Let $f \in L^1(\mathbb{R}^n)$, with $m(\{x : f(x) \neq 0\}) > 0$. Show that there exist C, R > 0 such that $Hf(x) \geq \frac{C}{|x|^n}$ whenever |x| > R. Show that this implies the existence of another constant C' > 0 such that, for α small enough, $m(\{x : Hf(x) > \alpha\}) \geq \frac{C'}{\alpha}$. That is, the estimate in the Hardy-Littlewood maximal theorem is pretty much as good as you can get.
- 2. Consider the function

$$H^*f(x) = \sup\left\{\frac{1}{m(B)}\int_B |f(y)|dy: B \text{ a ball}, x \in B\right\}.$$

Show that $Hf \leq H^*f \leq 2^n Hf$.

- 3. Show that if $f \in L^1_{loc}$ and f is continuous at x, then $x \in L_f$.
- 4. Let $f \in L^+(\mathbb{R}^n)$. Show that the measure fdm is regular if and only if $f \in L^1_{loc}$.