Math 423 Homework 8

1. Let $f(x)=\prod_{j=1}^{n} x_{j}^{\alpha_{j}}$ for $\alpha_{j} \in \mathbb{N} \cup\{0\}$ (so f is a monomial on \mathbb{R}^{n}). Show that $\int f d \sigma=0$ if any of the α_{j} is odd, and if all the α_{j} are even, then

$$
\int f d \sigma=\frac{2 \Gamma\left(\beta_{1}\right) \cdots \Gamma\left(\beta_{n}\right)}{\Gamma\left(\beta_{1}+\cdots+\beta_{n}\right)}
$$

where $\beta_{j}=\frac{\alpha_{j}+1}{2}$.
Hint: use the same idea that we used to find the surface area of the sphere: calculate $\int f(x) e^{-x^{2}} d x$ in two ways.
2. Let ν be a signed measure.
(a) Show that E is ν-null if and only if $|\nu|(E)=0$.
(b) If μ is another signed measure, show that $\nu \perp \mu$ if and only if $|\nu| \perp \mu$, if and only if $\nu^{+} \perp \mu$ and $\nu^{-} \perp \mu$.
3. Let μ be a positive measure on (X, \mathcal{M}), and let f be an extended μ-integrable function. Define $\nu(E)=\int_{E} f d \mu$. Describe the Hahn decompositions of X for ν and the positive, negative, and total variations of ν in terms of f and μ.

