Math 423 Homework 8

1. Let $f(x) = \prod_{j=1}^{n} x_j^{\alpha_j}$ for $\alpha_j \in \mathbb{N} \cup \{0\}$ (so f is a monomial on \mathbb{R}^n). Show that $\int f d\sigma = 0$ if any of the α_j is odd, and if all the α_j are even, then

$$\int f d\sigma = \frac{2\Gamma(\beta_1)\cdots\Gamma(\beta_n)}{\Gamma(\beta_1+\cdots+\beta_n)},$$

where $\beta_j = \frac{\alpha_j + 1}{2}$.

Hint: use the same idea that we used to find the surface area of the sphere: calculate $\int f(x)e^{-x^2}dx$ in two ways.

- 2. Let ν be a signed measure.
 - (a) Show that E is ν -null if and only if $|\nu|(E) = 0$.
 - (b) If μ is another signed measure, show that $\nu \perp \mu$ if and only if $|\nu| \perp \mu$, if and only if $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.
- 3. Let μ be a positive measure on (X, \mathcal{M}) , and let f be an extended μ -integrable function. Define $\nu(E) = \int_E f d\mu$. Describe the Hahn decompositions of X for ν and the positive, negative, and total variations of ν in terms of f and μ .