Math 423 Homework 2

1. Let (X, \mathcal{M}, μ) be a measure space and let A_1, \ldots, A_n be measurable. Prove the inclusion/exclusion principle:

$$\mu(\bigcup_{j=1}^{n} A_j) = \sum_{r=1}^{n} (-1)^{r+1} \sum_{1 \le k_1 < \dots < k_r \le n} \mu(A_{k_1} \cap \dots \cap A_{k_r})$$

- 2. Let \mathcal{A} consist of finite unions of sets of the form $(a, b] \cap \mathbb{Q}$, for $-\infty \leq a \leq b \leq \infty$.
 - (a) Show that \mathcal{A} is an algebra on \mathbb{Q} . (You may use Prop. 1.7 from Folland.)
 - (b) Show that the σ -algebra generated by \mathcal{A} is all of $\mathcal{P}(\mathbb{Q})$.
 - (c) Define μ_0 on \mathcal{A} by $\mu_0(\emptyset) = 0$ and $\mu_0(A) = \infty$ for all $A \neq \emptyset$. Show that μ_0 is a premeasure on \mathcal{A} .
 - (d) Show that the extension of μ_0 to $\mathcal{P}(\mathbb{Q})$ is not unique; that is, that there is a measure ν on $\mathcal{P}(\mathbb{Q})$ which agrees with μ_0 on \mathcal{A} but not on all of $\mathcal{P}(\mathbb{Q})$.
- 3. Let μ be a finite measure on (X, \mathcal{M}) and let μ^* be the outer measure induced by μ . Suppose that $E \subseteq X$ (but E may not be in \mathcal{M} !) and $\mu^*(E) = \mu^*(X)$.
 - (a) Show that if $A, B \in \mathcal{M}$ have $A \cap E = B \cap E$, then $\mu(A) = \mu(B)$.
 - (b) Let $\mathfrak{M}_E := \{A \cap E : A \in \mathfrak{M}\}$. Show that \mathfrak{M}_E is a σ -algebra on E.
 - (c) Define $\nu : \mathfrak{M}_E \to [0,\infty)$ by $\nu(A \cap E) = \mu(A)$. Show that ν is a well-defined measure on \mathfrak{M}_E .