Math 423 Homework 11

- 1. Show that the mean value theorem need not hold for F if F is only assumed to be absolutely continuous (hence a.e. differentiable).
- 2. Let X be a topological space and let $A \subseteq X$ be closed. Show that if $B \subseteq A$ is relatively closed, then in fact B is closed in X.
- 3. Let X be a non-empty set and let \mathcal{F} be a collection of real-valued functions on X. Show that the weak topology \mathcal{T} generated by \mathcal{F} is Hausdorff if and only if for all $x, y \in X$ with $x \neq y$, there is an $f \in \mathcal{F}$ such that $f(x) \neq f(y)$.
- 4. Let X be a topological space equipped with an equivalence relation. Let \tilde{X} be the set of equivalence classes, and let $\pi : X \to \tilde{X}$ be the map (often called the projection map) which takes a point to its equivalence class. Let

$$\mathfrak{T} = \{ U \subseteq \tilde{X} : \pi^{-1}(U) \text{ is open in } X \}.$$

- (a) Show that \mathcal{T} is a topology on \tilde{X} (it's called the quotient topology).
- (b) Show that if Y is another topological space, then $f : \tilde{X} \to Y$ is continuous if and only if $f \circ \pi : X \to Y$ is continuous.
- (c) Show that \tilde{X} is T_1 if and only if every equivalence class is closed.
- (d) Consider

$$\mathbb{SO}(2) = \left\{ \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} : \theta \in \mathbb{R} \right\}.$$

Define an equivalence relation on \mathbb{R}^2 by $x \sim y$ if and only if y = Ux for some $U \in SU(2)$. Show that the set of equivalence classes together with the quotient topology is homeomorphic to $[0, \infty)$ (with the usual topology).