Math 423 Homework 10

1. Show that if

$$
F(x)= \begin{cases}x \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

then $F \notin B V([a, b])$ for any $a \leq 0<b$ or $a<0 \leq b$.
2. Show that $F: \mathbb{R} \rightarrow \mathbb{C}$ is Lipschitz with Lipschitz constant M if and only if F is absolutely continuous and $\left|F^{\prime}\right| \leq M$ almost everywhere.
3. Let $F:(a, b) \rightarrow \mathbb{R}$ with $-\infty \leq a<b \leq \infty ; F$ is called convex if for all $s, t \in(a, b)$ and $\lambda \in(0,1)$,

$$
F(\lambda s+(1-\lambda) t) \leq \lambda F(s)+(1-\lambda) F(t)
$$

(a) Show that the definition of convexity given above is equivalent to: for all $s, t, s^{\prime}, t^{\prime} \in$ (a, b) such that $s \leq s^{\prime}<t^{\prime}$ and $s<t \leq t^{\prime}$,

$$
\frac{F(t)-F(s)}{t-s} \leq \frac{F\left(t^{\prime}\right)-F\left(s^{\prime}\right)}{t^{\prime}-s^{\prime}}
$$

(b) Show that F is convex if and only if F is absolutely continuous on every compact subinterval of (a, b) and F^{\prime} is increasing (on the set on which it is defined).
(c) Show that if F is convex and $t_{0} \in(a, b)$, then there is a $\beta \in \mathbb{R}$ such that $F(t)-$ $F\left(t_{0}\right) \geq \beta\left(t-t_{0}\right)$ for all $t \in(a, b)$.
(d) Prove Jensen's inequality: If (X, \mathcal{M}, μ) is a measure space with $\mu(X)=1, g$: $X \rightarrow(a, b)$ is in $L^{1}(\mu)$, and F is convex on (a, b), then

$$
F\left(\int g d \mu\right) \leq \int F \circ g d \mu .
$$

Hint: let $t_{0}=\int g d \mu$ and $t=g(x)$ in the previous part, and integrate.

