Math 423 Homework 1

- 1. A family of sets $\mathcal{R} \subseteq \mathcal{P}(X)$ is called a **ring** if it is closed under finite unitions and differences (i.e., if $E_1, \ldots, E_n \in \mathcal{R}$, then $\bigcup_{j=1}^n E_j \in \mathcal{R}$, and if $E, F \in \mathcal{R}$, then $F \setminus E \in \mathcal{R}$). A ring which is closed under countable unions is called a σ -ring. Prove the following statements:
 - (a) Rings (resp. σ -rings) are closed under finite (resp. countable) intersections.
 - (b) If \mathcal{R} is a σ -ring, then $\{E \subseteq X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$ is a σ -algebra.
 - (c) If \mathcal{R} is a σ -ring, then $\{E \subseteq X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$ is a σ -algebra.
- 2. Show that an algebra \mathcal{A} is a σ -algebra if and only if whenever $\{E_j\}_{j=1}^{\infty} \subseteq \mathcal{A}$ with $E_1 \subseteq E_2 \subseteq \cdots$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$.
- 3. Show that if \mathcal{M} is the σ -algebra generated by \mathcal{E} , then $\mathcal{M} = \bigcup \mathcal{M}(\mathcal{F})$, where the union is over $\mathcal{F} \subseteq \mathcal{E}$ countable. *Hint:* Show that this last object is a σ -algebra.
- 4. If (X, \mathcal{M}, μ) is a measure space and $\{E_j\}_{j=1}^{\infty} \subseteq \mathcal{M}$, then $\mu(\liminf E_j) \leq \liminf \mu(E_j)$. If $\mu(\bigcup_{i=1}^{\infty} E_j) < \infty$, then $\mu(\limsup E_j) \geq \limsup \mu(E_j)$.