
IMS Collections
High Dimensional Probability V: The Luminy Volume
Vol. 5 (2009) 153–178
c© Institute of Mathematical Statistics, 2009
DOI: 10.1214/09-IMSCOLL511

On Stein’s method for multivariate

normal approximation

Elizabeth Meckes1,∗

Case Western Reserve University

Abstract: The purpose of this paper is to synthesize the approaches taken
by Chatterjee-Meckes and Reinert-Röllin in adapting Stein’s method of ex-
changeable pairs for multivariate normal approximation. The more general
linear regression condition of Reinert-Röllin allows for wider applicability of
the method, while the method of bounding the solution of the Stein equation
due to Chatterjee-Meckes allows for improved convergence rates. Two abstract
normal approximation theorems are proved, one for use when the underlying
symmetries of the random variables are discrete, and one for use in contexts in
which continuous symmetry groups are present. A first application is presented
to projections of exchangeable random vectors in Rn onto one-dimensional sub-
spaces. The application to runs on the line from Reinert-Röllin is reworked to
demonstrate the improvement in convergence rates, and a new application to
joint value distributions of eigenfunctions of the Laplace-Beltrami operator on
a compact Riemannian manifold is presented.

1. Introduction

In 1972, Charles Stein [28] introduced a powerful new method for estimating the
distance from a probability distribution on R to a Gaussian distribution. Central
to the method was the notion of a characterizing operator: Stein observed that the
standard normal distribution was the unique probability distribution μ with the
property that ∫ [

f ′(x) − xf(x)
]
μ(dx) = 0

for all f for which the left-hand side exists and is finite. The operator To defined
on C1 functions by

Tof(x) = f ′(x) − xf(x)

is called the characterizing operator of the standard normal distribution. The left-
inverse to To, denoted Uo, is defined by the equation

To(Uof)(x) = f(x) − Ef(Z),

where Z is a standard normal random variable; the boundedness properties of Uo

are an essential ingredient of Stein’s method.
Stein and many other authors continued to develop this method; in 1986, Stein

published the book [29], which laid out his approach to the method, called the
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154 E. Meckes

method of exchangeable pairs, in detail. Stein’s method has proved very useful in
situations in which local dependence or weak global dependence are present. One of
the chief advantages of the method is that it is specifically a method for bounding
the distance from a fixed distribution to Gaussian, and thus automatically produces
concrete error bounds in limit theorems. The method is most naturally formulated
by viewing probability measures as dual to various classes of functions, so that
the notions of distance that arise are those which can be expressed as differences
of expectations of test functions (e.g., the total variation distance, Wasserstein
distance, or bounded Lipschitz distance). Several authors (particularly Bolthausen
[2], Götze [8], Rinott and Rotar [24], and Shao and Su [27]) have extended the
method to non-smooth test functions, such as indicator functions of intervals in R

and indicator functions of convex sets in R
k.

Heuristically, the univariate method of exchangeable pairs goes as follows. Let
W be a random variable conjectured to be approximately Gaussian; assume that
EW = 0 and EW 2 = 1. From W , construct a new random variable W ′ such that the
pair (W, W ′) has the same distribution as (W ′, W ). This is usually done by making
a “small random change” in W , so that W and W ′ are close. Let Δ = W ′ − W . If
it can be verified that there is a λ > 0 such that

(1) E
[
Δ
∣∣W ]

= −λW + E1,

(2) E
[
Δ2

∣∣W ]
= 2λ + E2,

(3) E|Δ|3 = E3,

with the random quantities E1, E2 and the deterministic quantity E3 being small
compared to λ, then W is indeed approximately Gaussian, and its distance to
Gaussian (in some metric) can be bounded in terms of the Ei and λ.

While there had been successful uses of multivariate versions of Stein’s method
for normal approximation in the years following the introduction of the univariate
method (e.g., by Götze [8], Rinott and Rotar [24], [25], and Raič [21]), there had
not until recently been a version of the method of exchangeable pairs for use in a
multivariate setting. This was first addressed in joint work by the author with S.
Chatterjee [3], where several abstract normal approximation theorems, for approx-
imating by standard Gaussian random vectors, were proved. The theorems were
applied to estimate the rate of convergence in the multivariate central limit theo-
rem and to show that rank k projections of Haar measure on the orthogonal group
On and the unitary group Un are close to Gaussian measure on R

k (respectively
C

k), when k = o(n). The condition in the theorems of [3] corresponding to condition
(1) above was that, for an exchangeable pair of random vectors (X, X ′),

(4) E
[
X ′ − X

∣∣X]
= −λX.

The addition of a random error to this equation was not needed in the applications
in [3], but is a straightforward modification of the theorems proved there.

After the initial draft of [3] appeared on the ArXiv, a preprint was posted by
Reinert and Röllin [23] which generalized one of the abstract normal approximation
theorems of [3]. Instead of condition (4) above, they required

(5) E
[
X ′ − X

∣∣X]
= −ΛX + E,
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where Λ is a positive definite matrix and E is a random error. This more general
condition allowed their abstract approximation theorem to be used directly to es-
timate the distance to Gaussian random vectors with non-identity (even singular)
covariance matrices. They then used what they call “the embedding method” for
approximating real random variables by the normal distribution, by observing that
in many cases in which the condition (1) does not hold, the random variable in
question can be viewed as one component of a random vector which satisfies condi-
tion (5) with a non-diagonal Λ. Many examples are given, both of the embedding
method and the multivariate normal approximation theorem directly, including ap-
plications to runs on the line, statistics of Bernoulli random graphs, U-statistics,
and doubly-indexed permutation statistics. The embedding approach used in [23]
is similar to the approach taken by Janson in a continuous time setting in [11],
where results about statistics of random graphs originally proved by Ruciński [26],
Barbour, Karoński, and Ruciński [1] and Janson and Nowicki [12] were reproved by
viewing the random graphs as particular time instants of a stochastic process.

After [23] was posted, [3] underwent significant revisions, largely to change the
metrics which were used on the space of probability measures on R

k and C
k. As

mentioned above, Stein’s method works most naturally to compare measures by
using (usually smooth) classes of test functions. The smoothness conditions used
by Reinert and Röllin, and those initially used in [3], are to assume bounds on the
quantities

|h|r := sup
1≤i1,...,ir ≤k

∥∥∥∥ ∂rh

∂xi1 · · · ∂xir

∥∥∥∥
∞

.

The approach taken in the published version of [3] is to give smoothness conditions
instead by requiring bounds on the quantities

Mr(h) := sup
x∈Rk

‖Drh(x)‖op,

where ‖Drh(x)‖op is the operator norm of the r-th derivative of h, as an r-linear
form. These smoothness conditions seem preferable for several reasons. Firstly, they
are more geometrically natural, as they are coordinate-free; they depend only on
distances and not on the choice of orthonormal basis of R

k. Particularly when
approximating by the standard Gaussian distribution on Rk, which is of course
rotationally invariant, it seems desirable to have a notion of distance which is also
rotationally invariant. In more practical terms, considering classes of functions de-
fined in terms of bounds on the quantities Mr and modifying the proofs of the ab-
stract theorems accordingly allows for improved error bounds. The original bound
on the Wasserstein distance from a k-dimensional projection of Haar measure on
On to standard Gauss measure from the first version of [3] was ck3/2

n , while the
coordinate-free viewpoint allowed the bound to be improved to c k

n (in the same
metric). In Section 3 below, the example of runs on the line from [23] is reworked
with this viewpoint, with essentially the same ingredients, to demonstrate that the
rates of convergence obtained are improved. Finally, most of the bounds in [3] and
below, and those from the main theorem in [23] require two or three derivatives,
so that an additional smoothing argument is needed to move to one of the more
usual metrics on probability measures (e.g. Wasserstein distance, total variation dis-
tance, or bounded Lipschitz distance). Starting from bounds in terms of the Mr(h)
instead of the |h|r typically produces better results in the final metric; compare,
e.g., Proposition 3.2 of the original ArXiv version of the paper [20] of M. Meckes
with Corollary 3.5 of the published version, in which one of the abstract approxi-
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mation theorems of [3] was applied to the study of the distribution of marginals of
the uniform measure on high-dimensional convex bodies.

The purpose of this paper is to synthesize the approaches taken by the author
and Chatterjee in [3] and Reinert and Röllin in [23]. In Section 2, two preliminary
lemmas are proved, identifying a characterizing operator for the Gaussian distribu-
tion on R

k with covariance matrix Σ and bounding the derivatives of its left-inverse
in terms of the quantities Mr. Then, two abstract normal approximation theorems
are proved. The first is a synthesis of Theorem 2.3 of [3] and Theorem 2.1 of [23],
in which the distance from X to a Gaussian random variable with mean zero and
covariance Σ is bounded, for X the first member of an exchangeable pair (X, X ′)
satisfying condition (5) above. The second approximation theorem is analogous to
Theorem 2.4 of [3], and is for situations in which the underlying random variable
possesses “continuous symmetries.” A condition similar to (5) is used in that theo-
rem as well. Finally, in Section 3, three applications are carried out. The first is an
illustration of the use of the method, which shows that projections of exchangeable
random vectors in R

n onto k-dimensional subspaces are usually close to Gaussian if
the dependence among the components is not too great; “usually” refers to which
subspaces one can project onto, and the error is given in terms of �3 norms of a
spanning set of vectors for the subspace. The second application is simply a rework-
ing of the runs on the line example of [23], making use of their analysis together
with Theorem 3 below to obtain a better rate of convergence. Lastly, an application
is given to the joint value distribution of a finite sequence of orthonormal eigenfunc-
tions of the Laplace-Beltrami operator on a compact Riemannian manifold. This is
a multivariate version of the main theorem of [17]. As an example, the error bound
of this theorem is computed explicitly for a certain class of flat tori.

1.1. Notation and conventions

The Wasserstein distance dW (X, Y ) between the random variables X and Y is
defined by

dW (X, Y ) = sup
M1(g)≤1

∣∣Eg(X) − Eg(Y )
∣∣,

where M1(g) = supx �=y
|g(x)−g(y)|

|x−y| is the Lipschitz constant of g. On the space of
probability distributions with finite absolute first moment, Wasserstein distance
induces a stronger topology than the usual one described by weak convergence,
but not as strong as the topology induced by the total variation distance. See
[5] for detailed discussion of the various notions of distance between probability
distributions.

We will use N(μ, Σ) to denote the normal distribution on Rk with mean μ and
covariance matrix Σ; unless otherwise stated, the random variable Z = (Z1, . . . , Zk)
is understood to be a standard Gaussian random vector on R

k.
In R

n, the Euclidean inner product is denoted 〈 ·, · 〉 and the Euclidean norm is
denoted | · |. On the space of real n × n matrices, the Hilbert-Schmidt inner product
is defined by

〈A, B〉H.S. = Tr (ABT ),

with corresponding norm

‖A‖H.S. =
√

Tr (AAT ).
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The operator norm of a matrix A over R is defined by

‖A‖op = sup
|v|=1,|w|=1

| 〈Av, w〉 |.

More generally, if A is a k-linear form on R
n, the operator norm of A is defined to

be
‖A‖op = sup{ |A(u1, . . . , uk)| : |u1| = · · · = |un| = 1}.

The n × n identity matrix is denoted In and the n × n matrix of all zeros is denoted
0n.

For Ω a domain in R
n, the notation Ck(Ω) will be used for the space of k-times

continuously differentiable real-valued functions on Ω, and Ck
o (Ω) ⊆ Ck(Ω) are

those Ck functions on Ω with compact support. The k-th derivative Dkf(x) of a
function f ∈ Ck(Rn) is a k-linear form on R

n, given in coordinates by

〈
Dkf(x), (u1, . . . , uk)

〉
=

n∑
i1,...,ik=1

∂kf

∂xi1 · · · ∂xik

(x)(u1)i1 · · · (uk)ik
,

where (ui)j denotes the j-th component of the vector ui. For an intrinsic, coordinate-
free developement, see Federer [6]. For f : Rn → R, sufficiently smooth, let

(6) Mk(f) := sup
x∈Rn

‖Dkf(x)‖op.

In the case k = 2, define

(7) M̃2(f) := sup
x∈Rn

‖Hess f(x)‖H.S..

Note also that

Mk(f) = sup
x �=y

‖Dk−1f(x) − Dk−1f(y)‖op

|x − y| ;

that is, Mk(f) is the Lipschitz constant of the k − 1-st derivative of f .
This general definition of Mk is a departure from what was done by Raič in [22];

there, smoothness conditions on functions are also given in coordinate-independent
ways, and M1 and M2 are defined as they are here, but in case k = 3, the quantity
M3 is defined as the Lipschitz constant of the Hessian with respect to the Hilbert-
Schmidt norm as opposed to the operator norm.

2. Abstract Approximation Theorems

This section contains the basic lemmas giving the Stein characterization of the mul-
tivariate Gaussian distribution and bounds to the solution of the Stein equation,
together with two multivariate abstract normal approximation theorems and their
proofs. The first theorem is a reworking of the theorem of Reinert and Röllin on mul-
tivariate normal approximation with the method of exchangeable pairs for vectors
with non-identity covariance. The second is an analogous result in the context of
“continuous symmetries” of the underlying random variable, as has been previously
studied by the author in [18], [17], and (jointly with S. Chatterjee) in [3].

The following lemma gives a second-order characterizing operator for the Gauss-
ian distribution with mean 0 and covariance Σ on R

d. The characterizing opera-
tor for this distribution is already well-known. The proofs available in the litera-
ture generally rely on viewing the Stein equation in terms of the generator of the
Ornstein-Uhlenbeck semi-group; the proof given here is direct.
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Lemma 1. Let Z ∈ R
d be a random vector with {Zi}d

i=1 independent, identically
distributed standard Gaussian random variables, and let ZΣ = Σ1/2Z for a sym-
metric, non-negative definite matrix Σ.

1. If f : R
d → R is two times continuously differentiable and compactly sup-

ported, then

E
[

〈Hess f(ZΣ), Σ〉H.S. − 〈ZΣ, ∇f(ZΣ)〉
]

= 0.

2. If Y ∈ R
d is a random vector such that

E
[

〈Hess f(Y ), Σ〉H.S. − 〈Y, ∇f(Y )〉
]

= 0

for every f ∈ C2(Rd) with E| 〈Hess f(Y ), Σ〉H.S. − 〈Y, ∇f(Y )〉 | < ∞, then
L(Y ) = L(ZΣ).

3. If g ∈ C∞(Rd), then the function

(8) Uog(x) :=
∫ 1

0

1
2t

[
Eg(

√
tx +

√
1 − tZΣ) − Eg(ZΣ)

]
dt

is a solution to the differential equation

(9) 〈x, ∇h(x)〉 − 〈Hess h(x), Σ〉H.S. = g(x) − Eg(ZΣ).

Proof. Part (1) follows from integration by parts.
Part (2) follows easily from part (3): note that if E[〈Hess f(Y ), Σ〉H.S. − 〈Y,

∇f(Y )〉] = 0 for every f ∈ C2(Rd) with E| 〈Hess f(Y ), Σ〉H.S. − 〈Y, ∇f(Y )〉 | < ∞,
then for g ∈ C∞

o given,

Eg(Y ) − Eg(Z) = E
[

〈Hess (Uog)(Y ), Σ〉H.S. − 〈Y, ∇(Uog)(Y )〉
]

= 0,

and so L(Y ) = L(Z) since C∞ is dense in the class of bounded continuous functions,
with respect to the supremum norm.

For part (3), first note that since g is Lipschitz, if t ∈ (0, 1)∣∣∣∣ 1
2t

[
Eg(

√
tx +

√
1 − tΣ1/2Z) − Eg(Σ1/2Z)

]∣∣∣∣ ≤ L

2t
E

∣∣∣√
tx + (

√
1 − t − 1)Σ1/2Z

∣∣∣
≤ L

2t

[√
t|x| + t

√
Tr (Σ)

]
,

which is integrable on (0, 1), so the integral exists by the dominated convergence
theorem.

To show that Uog is indeed a solution to the differential equation (9), let

Zx,t =
√

tx +
√

1 − tΣ1/2Z

and observe that

g(x) − Eg(Σ1/2Z) =
∫ 1

0

d

dt
Eg(Zx,t)dt

=
∫ 1

0

1
2

√
t
E(x · ∇g(Zt))dt −

∫ 1

0

1
2

√
1 − t

E

〈
Σ1/2Z, ∇g(Zt)

〉
dt

=
∫ 1

0

1
2

√
t
E(x · ∇g(Zt))dt −

∫ 1

0

1
2

E 〈Hess g(Zt), Σ〉H.S. dt
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by integration by parts. Noting that

Hess (Uog)(x) =
∫ 1

0

1
2

E
[
Hess g(Zt)

]
dt

and

x · ∇(Uog)(x) =
∫ 1

0

1
2

√
t
E(x · ∇g(Zt))dt

completes part 3.

The next lemma gives useful bounds on Uog and its derivatives in terms of g and
its derivatives. As in [22], bounds are most naturally given in terms of the quantities
Mi(g) defined in the introduction.

Lemma 2. For g : R
d → R given, Uog satisfies the following bounds:

1.
Mk(Uog) ≤ 1

k
Mk(g) ∀k ≥ 1.

2.
M̃2(Uog) ≤ 1

2
M̃2(g).

If, in addition, Σ is positive definite, then

3.

M1(Uog) ≤ Mo(g)‖Σ−1/2‖op

√
π

2
.

4.

M̃2(Uog) ≤
√

2
π

M1(g)‖Σ−1/2‖op.

5.

M3(Uog) ≤
√

2π

4
M2(g)‖Σ−1/2‖op.

Remark. Bounds (2), (2), and (2) are mainly of use when Σ has a fairly simple
form, since they require an estimate for ‖Σ−1/2‖op. They are also of theoretical
interest, since they show that if Σ is non-singular, then the operator Uo is smoothing;
functions Uog are typically one order smoother than g. The bounds (1) and (2),
while not showing the smoothing behavior of Uo, are useful when Σ is complicated
(or singular) and an estimate of ‖Σ−1/2‖op is infeasible or impossible.

Proof of Lemma 2. Write h(x) = Uog(x) and Zx,t =
√

tx+
√

1 − tΣ1/2Z. Note that
by the formula for Uog,

(10)
∂rh

∂xi1 · · · ∂xir

(x) =
∫ 1

0

(2t)−1tr/2
E

[
∂rg

∂xi1 · · · ∂xir

(Zx,t)
]

dt.

Thus

〈
Dk(Uog)(x), (u1, . . . , uk)

〉
=
∫ 1

0

t
k
2 −1

2
E
[ 〈

Dkg(Zx,t), (u1, . . . , uk)
〉 ]

dt

for unit vectors u1, . . . , uk, and part (1) follows immediately.
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For the second part, note that (10) implies that

Hess h(x) =
1
2

∫ 1

0

E [Hess g(Zx,t)] dt.

Fix a d × d matrix A. Then

|〈Hess h(x), A〉H.S.| ≤ 1
2

∫ 1

0

E
∣∣〈Hess g(Zx,t), A〉H.S.

∣∣ dt

≤ 1
2

(
sup

x
‖Hess g(x)‖H.S.

)
‖A‖H.S.,

hence part (2).
For part (2), note that it follows by integration by parts on the Gaussian expec-

tation that

∂h

∂xi
(x) =

∫ 1

0

1
2

√
t
E

[
∂g

∂xi
(

√
tx +

√
1 − tΣ1/2Z)

]
dt

=
∫ 1

0

1
2
√

t(1 − t)
E

[
(Σ−1/2Z)ig(

√
tx +

√
1 − tΣ1/2Z)

]
dt,

thus

∇h(x) =
∫ 1

0

1
2
√

t(1 − t)
E

[
g(Zx,t)Σ−1/2Z

]
dt,

and so

M1(h) ≤ ‖g‖∞E
∣∣Σ−1/2Z

∣∣ ∫ 1

0

1
2
√

t(1 − t)
dt.

Now, E|Σ−1/2Z| ≤ ‖Σ−1/2‖opE|Z1| = ‖Σ−1/2‖op

√
2
π , since Σ−1/2Z is a univariate

Gaussian random variable, and
∫ 1

0
1

2
√

t(1−t)
= π

2 . This completes part (2).

For part (2), again using integration by parts on the Gaussian expectation,

∂2h

∂xi∂xj
(x) =

∫ 1

0

1
2

E

[
∂2g

∂xi∂xj
(

√
tx +

√
1 − tΣ1/2Z)

]
dt

=
∫ 1

0

1
2

√
1 − t

E

[[
Σ−1/2Z

]
i

∂g

∂xj
(Zx,t)

]
dt,

(11)

and so

(12) Hess h(x) =
∫ 1

0

1
2

√
1 − t

E

[
Σ−1/2Z (∇g(Zx,t))

T
]
dt.

Fix a d × d matrix A. Then

〈Hess h(x), A〉H.S. =
∫ 1

0

1
2

√
1 − t

E

[〈
AT Σ−1/2Z, ∇g(Zx,t)

〉]
dt,

thus

| 〈Hess h(x), A〉H.S.| ≤ M1(g)E|AT Σ−1/2Z|
∫ 1

0

1
2

√
1 − t

dt = M1(g)E|AT Σ−1/2Z|.
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As above,

E|AT Σ−1/2Z| ≤ ‖AT Σ−1/2‖op

√
2
π

≤
√

2
π

‖Σ−1/2‖op‖A‖H.S..

It follows that

‖Hess h(x)‖H.S. ≤
√

2
π

M1(g)‖Σ−1/2‖op

for all x ∈ R
d, hence part (2).

For part (2), let u and v be fixed vectors in R
d with |u| = |v| = 1. Then it follows

from (12) that

〈(Hess h(x) − Hess h(y)) u, v〉

=
∫ 1

0

1
2

√
1 − t

E

[〈
Σ−1/2Z, v

〉
〈 ∇g(Zx,t) − ∇g(Zy,t), u〉

]
dt,

and so

| 〈(Hess h(x) − Hess h(y))u, v〉 | ≤ |x − y| M2(g) E|
〈
Z, Σ−1/2v

〉
|
∫ 1

0

√
t

2
√

1 − t
dt

= |x − y| M2(g)
∣∣Σ−1/2v

∣∣√
2π

4

≤ |x − y| M2(g)
∥∥Σ−1/2

∥∥
op

√
2π

4
.

Theorem 3. Let (X, X ′) be an exchangeable pair of random vectors in R
d. Let F

be a σ-algebra with σ(X) ⊆ F , and suppose that there is an invertible matrix Λ,
a symmetric, non-negative definite matrix Σ, an F -measureable random vector E
and an F -measureable random matrix E′ such that

1.
E
[
X ′ − X

∣∣F
]

= −ΛX + E

2.
E
[
(X ′ − X)(X ′ − X)T

∣∣F
]

= 2ΛΣ + E′.

Then for g ∈ C3(Rd),∣∣Eg(X) − Eg(Σ1/2Z)
∣∣

≤ ‖Λ−1‖op

[
M1(g)E|E| +

1
4
M̃2(g)E‖E′ ‖H.S. +

1
9
M3(g)E|X ′ − X|3

]
≤ ‖Λ−1‖op

[
M1(g)E|E| +

√
d

4
M2(g)E‖E′ ‖H.S. +

1
9
M3(g)E|X ′ − X|3

]
,

(13)

where Z is a standard Gaussian random vector in R
d.

If Σ is non-singular, then for g ∈ C2(Rd),

∣∣Eg(X) − Eg(Σ1/2Z)
∣∣ ≤ M1(g)‖Λ−1‖op

[
E|E| +

1
2

‖Σ−1/2‖opE‖E′ ‖H.S.

]
+

√
2π

24
M2(g)‖Σ−1/2‖op‖Λ−1‖opE|X ′ − X|3.

(14)
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Proof. Fix g, and let Uog be as in Lemma 1. Note that it suffices to assume that
g ∈ C∞(Rd): let h : R

d → R be a centered Gaussian density with covariance matrix
ε2Id. Approximate g by g ∗ h; clearly ‖g ∗ h − g‖∞ → 0 as ε → 0, and by Young’s
inequality, Mk(g ∗ h) ≤ Mk(g) for all k ≥ 1.

For notational convenience, let f = Uog. By the exchangeability of (X, X ′),

0 =
1
2

E
[〈

Λ−1(X ′ − X), ∇f(X ′) + ∇f(X)
〉]

= E

[
1
2
[
〈
Λ−1(X ′ − X), ∇f(X ′) − ∇f(X)

〉
+
〈
Λ−1(X ′ − X), ∇f(X)

〉]
= E

[
1
2
〈
Hess f(X), Λ−1(X ′ − X)(X ′ − X)T

〉
H.S.

+
〈
Λ−1(X ′ − X), ∇f(X)

〉
+

R

2

]
,

where R is the error in the Taylor approximation. By conditions (1) and (2), it
follows that

0 = E

[
〈Hess f(X), Σ〉H.S. − 〈X, ∇f(X)〉 +

1
2
〈
Hess f(X), Λ−1E′〉

H.S.

+
〈

∇f(X), Λ−1E
〉

+
R

2

]
;

that is (making use of the definition of f),
(15)

Eg(X) − Eg(Σ1/2Z) = E

[
1
2
〈
Hess f(X), Λ−1E′〉

H.S.
+
〈

∇f(X), Λ−1E
〉

+
R

2

]
.

Next,

E

∣∣∣∣12 〈Hess f(X), Λ−1E′〉
H.S.

∣∣∣∣
≤ 1

2

(
sup
x∈Rd

‖Hess f(x)‖H.S.

)
‖Λ−1E′ ‖H.S.

≤ 1
2

(
sup
x∈Rd

‖Hess f(x)‖H.S.

)
‖Λ−1‖op‖E′ ‖H.S.

≤ 1
2

‖Λ−1‖op‖E′ ‖H.S.

(
min

{
1
2
M̃2(g),

√
2
π

M1(g)‖Σ−1/2‖op

})
,

where the first line is by the Cauchy-Schwarz inequality, the second is by the stan-
dard bound ‖AB‖H.S. ≤ ‖A‖op‖B‖H.S., and the third uses the bounds (2) and (2)
from Lemma 2.

Similarly,

E
∣∣〈∇f(X), Λ−1E

〉∣∣ ≤ M1(f)‖Λ−1‖opE |E|

≤ ‖Λ−1‖opE |E|
(

min
{

M1(g),
√

π

2
Mo(g)‖Σ−1/2‖op

})
.
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Finally, by Taylor’s theorem and Lemma 2,

|R| ≤ M3(f)
3

∣∣X ′ − X
∣∣2∣∣Λ−1(X ′ − X)

∣∣
≤ 1

3
‖Λ−1‖op

∣∣X ′ − X
∣∣3 (min

{
1
3
M3(g),

√
2π

4
M2(g)‖Σ−1/2‖op

})
.

The first bound of the theorem results from choosing the first term from each
minimum; the second bound results from the second terms.

Theorem 4. Let X be a random vector in Rd and, for each ε ∈ (0, 1), suppose
that (X, Xε) is an exchangeable pair. Let F be a σ-algebra such that σ(X) ⊆ F and
suppose that there is an invertible matrix Λ, a symmetric, non-negative definite
matrix Σ, an F -measureable random vector E, an F -measureable random matrix
E′, and a deterministic function s(ε) such that

1.
1

s(ε)
E
[
X ′ − X

∣∣F
] L1−−−→

ε→0
−ΛX + E

2.
1

s(ε)
E
[
(X ′ − X)(X ′ − X)T

∣∣F
] L1(‖·‖H.S.)−−−−−−−→

ε→0
2ΛΣ + E′.

3. For each ρ > 0,

lim
ε→0

1
s(ε)

E
[

|Xε − X|2I(|Xε − X|2 > ρ)
]

= 0.

Then for g ∈ C2(Rd),∣∣Eg(X) − Eg(Σ1/2Z)
∣∣ ≤ ‖Λ−1‖op

[
M1(g)E|E| +

1
4
M̃2(g)E‖E′ ‖H.S.

]
≤ ‖Λ−1‖op

[
M1(g)E|E| +

√
d

4
M2(g)E‖E′ ‖H.S.

]
,

(16)

where Z is a standard Gaussian random vector in R
d.

Also, if Σ is non-singular,

dW (X, Σ1/2Z) ≤ ‖Λ−1‖op

[
E|E| +

1
2

‖Σ−1/2‖opE‖E′ ‖H.S.

]
.(17)

Proof. Fix g, and let Uog be as in Lemma 1. As in the proof of Theorem 3, it suffices
to assume that g ∈ C∞(Rd).

For notational convenience, let f = Uog. Beginning as before,

0 =
1

2s(ε)
E
[〈

Λ−1(Xε − X), ∇f(Xε) + ∇f(X)
〉]

=
1

s(ε)
E

[
1
2
[
〈
Λ−1(Xε − X), ∇f(Xε) − ∇f(X)

〉
+
〈
Λ−1(Xε − X), ∇f(X)

〉]
=

1
s(ε)

E

[
1
2
〈
Hess f(X), Λ−1(Xε − X)(Xε − X)T

〉
H.S.

+
〈
Λ−1(Xε − X), ∇f(X)

〉
+

R

2

]
,

(18)
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where R is the error in the Taylor approximation.
Now, by Taylor’s theorem, there exists a real number K depending on f , such

that

|R| ≤ K min
{

|Xε − X|2|Λ−1(Xε − X)|, |Xε − X| |Λ−1(Xε − X)|
}

≤ K‖Λ−1‖op min
{

|Xε − X|3, |Xε − X|2
}

Breaking up the expectation over the sets on which |Xε − X|2 is larger and smaller
than a fixed ρ > 0,

1
s(ε)

E
∣∣R∣∣ ≤ K‖Λ−1‖op

s(ε)
E

[
|Xε − X|3I(|Xε − X| ≤ ρ) + |Xε − X|2I(|Xε − X| > ρ)

]
≤

K‖Λ−1‖opρE
∣∣Xε − X

∣∣2
s(ε)

+
K‖Λ−1‖op

s(ε)
E

[
|Xε − X|2I(|X ′ − X| > ρ)

]
.

The second term tends to zero as ε → 0 by condition 3; condition 2 implies that the
first is bounded by CK‖Λ−1‖opρ for a constant C depending on the distribution of
X. It follows that

lim
ε→0

1
s(ε)

E
∣∣R∣∣ = 0.

For the rest of (18),

lim
ε→0

1
s(ε)

E

[
1
2
〈
Hess f(X), Λ−1(Xε − X)(Xε − X)T

〉
H.S.

+
〈
Λ−1(Xε − X), ∇f(X)

〉]
= E

[
〈Hess f(X), Σ〉H.S. − 〈X, ∇f(X)〉

+
1
2
〈
Hess f(X), Λ−1E′〉

H.S.
+
〈

∇f(X), Λ−1E
〉]

,

where conditions (1) and (2) together with the boundedness of Hess f and ∇f have
been used. That is (making use of the definition of f),

(19) Eg(X) − Eg(Σ1/2Z) = E

[
1
2
〈
Hess f(X), Λ−1E′〉

H.S.
+
〈

∇f(X), Λ−1E
〉]

.

As in the proof of Theorem 3,

E

∣∣∣∣12 〈Hess f(X), Λ−1E′〉
H.S.

∣∣∣∣
≤ 1

2
‖Λ−1‖op‖E′ ‖H.S.

(
min

{
1
2
M̃2(g),

√
2
π

M1(g)‖Σ−1/2‖op

})
,

and

E
∣∣〈∇f(X), Λ−1E

〉∣∣ ≤ ‖Λ−1‖opE |E| M1(g).

This completes the proof.

Remarks.

1. Note that the condition

(3′) limε→0
1

s(ε)E
∣∣Xε − X

∣∣3 = 0,
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is stronger than condition (3) of Theorem 4 and may be used instead; this is
what is done in the application given in Section 3.

2. In [23], singular covariance matrices are treated by comparing to a nearby non-
singular covariance matrix rather than directly. However, this is not necessary
as all the proofs except those explicitly involving Σ−1/2 go through for non-
negative definite Σ.

3. Examples

3.1. Projections of exchangeable random vectors

Let X = (X1, . . . , Xn) be an exchangeable random vector; that is, a random vector
whose distribution is invariant under permutation of the components. Assume that
EX1 = 0 and EX2

1 = 1. Let {θi}k
i=1 be a collection of unit vectors in R

n, and
consider the random vector W with ith component Wi := 〈θi, X〉 (the dependence
of W on the θi is suppressed). In this example we will show that under some
conditions on the θ, W is approximately distributed as a Gaussian random vector
with covariance matrix Σ, whose entries are given by σij := 〈θi, θj 〉. A particular
case of interest is when X is drawn uniformly from a convex body in R

n invariant
under permutation of the coordinates; this includes for example all so-called 1-
symmetric bodies (in particular, the �p balls) as well as the simplex. It was recently
shown by Bo’az Klartag in [13] (and quantitatively improved by Klartag in [14])
that in fact most such projections of a random vector drawn from a convex body
are close to Gaussian, without any symmetry assumptions. The exchangeability
assumed here allows for a fairly straightforward proof of this special case.

Before proceeding with the example, we make one simplifying assumption: write
θi = (θi1, . . . , θin) and assume that for each i ∈ {1, . . . , k},

∑n
r=1 θir = 0. This

assumption is convenient for technical reasons, but can be removed at the cost of
some extra error terms.

First observe that with W defined as above, EW = 0. Also,

E
[
WiWj

]
=

n∑
r=1

θirθjr + E
[
X1X2

]∑
r �=s

θirθjs =
(
1 − E

[
X1X2

])
〈θi, θj 〉 ,

where the first equality is by the exchangeability of X and the second uses the fact
that

∑n
r=1 θir = 0 for each i. While there is no requirement that E[X1X2] = 0, it will

turn out that this quantity must be small for this approach to yield an interesting
bound on the distance from W to Gaussian, so the approximation will be by the
Gaussian distribution with covariance matrix Σ = [σij ]ki,j=1 with σij = 〈θi, θj 〉.

To use Theorem 3 to show that W as defined above is approximately Gaussian,
the first step is to construct an exchangeable pair (W, W ′); as is frequently done
in applying the method of exchangeable pairs, this is done by first constructing an
exchangeable pair at the level of X. Let τ = (I J) be uniformly distributed among
the transpositions on Sn, independent of X, and define X ′ by

X ′ :=
(
Xτ(1), . . . , Xτ(n)

)
.

Then (X, X ′) is exchangeable, and so if W ′ := W (X ′), then (W, W ′) is exchange-
able. Observe that W ′

i = 〈θi, X ′ 〉 = Wi + θiIXJ − θiIXI + θiJXI − θiJXJ , that
is,

(20) W ′
i − Wi = (θiI − θiJ)(XJ − XI).
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Let
∑′

denote summing over distinct indices. Then

E
[
W ′

i − Wi

∣∣X]
=

1
n(n − 1)

∑′

r,s

(
θirXs − θirXr + θisXr − θisXs

)
= − 2

n − 1
Wi,

again using that
∑

r θir = 0. Condition (1) of Theorem 3 is thus satisfied with
Λ = 2

n−1Ik, with Ik denoting the k × k identity matrix, and E = 0. The factor
‖Λ−1‖op that appears in the statement of the theorem can thus be immediately
identified: ‖Λ−1‖op = n−1

2 .

Next, the random matrix E′ of condition (2) of Theorem 3 must be identified.
Letting 1 stand for the vector in R

n with 1 as each entry,

E
[
(W ′

i − Wi)(W ′
j − Wj)

∣∣X]
=

1
n(n − 1)

∑′

r,s

(θir − θis)(θjr − θjs)(Xs − Xr)2

=
4

n − 1
〈θi, θj 〉 − 2

n(n − 1)

[
〈θi, θj 〉 (|X|2 − n) + n

(
n∑

r=1

θirθjrX
2
r − 〈θi, θj 〉

)

−2 〈X,1〉
n∑

r=1

θirθjrXr + WiWj

]
,

where the second equality follows from straightforward manipulation after expand-
ing the squares in the line above. It thus follows that

E′
ij = − 2

n(n − 1)

[
〈θi, θj 〉 (|X|2 − n) + n

(
n∑

r=1

θirθjrX
2
r − 〈θi, θj 〉

)

−2 〈X,1〉
n∑

r=1

θirθjrXr + WiWj

]
.

To apply Theorem 3, a bound on E‖E′ ‖HS is required. Using the ‖ · ‖HS-triangle
inequality and considering each of the four terms separately, the first term yields

‖Σ‖HSE

∣∣∣|X|2 − n
∣∣∣ ≤ ‖Σ‖HS

√
E

∑
i,j

(X2
i − 1)(X2

j − 1)

≤ ‖Σ‖HS

[√
nEX4

1 +
√

n(n − 1)E(X2
1 − 1)(X2

2 − 1)
]

.

The second term yields a similar contribution:

n

∥∥∥∥∥∥
[

n∑
r=1

θirθjrX
2
r − 〈θi, θj 〉

]
ij

∥∥∥∥∥∥
HS

≤ n

√√√√
E

∑
ij

(
〈θi, θj 〉 −

∑
r

θirθjrX2
r

)2

= n
√

E(X2
1 − 1)(X2

2 − 1)‖Σ‖HS .
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For the third term,

E

∥∥∥∥∥∥〈X,1〉
[

n∑
r=1

θirθjrXr

]
ij

∥∥∥∥∥∥
HS

≤

√√√√√E 〈X,1〉2
E

⎛⎝∑
i,j

∑
r,s

θirθjrθisθjsXrXs

⎞⎠

=

√√√√√(n + n(n − 1)EX1X2)

⎡⎣(1 − EX1X2)

⎛⎝∑
i,j

∑
r

θ2
irθ

2
jr

⎞⎠+ ‖Σ‖2
HSEX1X2

⎤⎦
≤
√

n + n2|EX1X2|
[
2
∑

i

‖θi‖2
4 + ‖Σ‖HS

√
|EX1X2|

]
,

using the Cauchy-Schwarz and Hölder inequalities to get the last bound.
For the last term, define the matrix C = [cij ]ki,j=1 by cij :=

∑n
r=1 θ2

irθ
2
jr. Some

tedious but straightforward manipulation yields

EW 2
i W 2

j = cij

[
EX4

1 − 3EX2
1X2

2 − 4EX3
1X2 + 12EX2

1X2X3 − 6EX1X2X3X4

]
+ σ2

ij

[
2EX2

1X2
2 − 4EX2

1X2X3 + 2EX1X2X3X4

]
+
[
EX2

1X2
2 − 2EX2

1X2X3 + EX1X2X3X4

]
.

(21)

Making use of the Cauchy-Schwarz inequality on the inner sums and the fact that
‖θi‖4 ≤ ‖θi‖2 = 1 for all i,

‖C‖HS =

√√√√ k∑
i,j=1

n∑
r,s=1

θ2
irθ

2
jrθ

2
isθ

2
js ≤

√∑
i,j

‖θi‖4
4‖θj ‖4

4 ≤
∑

i

‖θi‖4
4 ≤ k.

Recall that |σij | = | 〈θi, θj 〉| ≤ 1 as well, thus

∥∥[σ2
ij

]k
i,j=1

∥∥
HS

=
√∑

i,j

σ4
ij ≤ k.

Trivially, the k × k matrix with every entry equal to 1 also has Hilbert-Schmidt
norm equal to k. Furthermore, each of the expectations of products of the Xi that
appears in (21) is bounded in absolute value by EX4

1 , thus

E
∥∥WWT

∥∥
HS

≤ 38kEX4
1 .

Collecting terms and making some simplifications, it has been shown that

E
∥∥E′ ‖HS ≤ 2

n(n − 1)

[∥∥Σ∥∥
HS

(
2n
√

E(X2
1 − 1)(X2

2 − 1)

+
√

(n + n2|EX1X2|)|EX1X2|
)

+
√

(n + n2|EX1X2|)
∑

i

‖θi‖2
4 + 38kEX4

1

]
.

(22)
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It remains to bound E|W ′ − W |3. First averaging over τ , and then making use of
Hölder’s inequality and repeated use of the L3-triangle inequality,

E|W ′ − W |3 ≤
√

k

n(n − 1)

n∑
r,s=1

k∑
i=1

|θir − θis|3E|Xs − Xr |3

≤ 8
√

kE|X1|3
n(n − 1)

n∑
r,s=1

k∑
i=1

|θir − θis|3

≤ 64
√

kE|X1|3
n − 1

k∑
i=1

‖θi‖3
3.

Collecting all of the estimates and applying Theorem 3 now yields the following.

Theorem 5. Let X be an exchangeable random vector in R
n and {θi}k

i=1 unit
vectors in R

n with
∑n

r=1 θir = 0 for each i. Define the random vector W with
ith component Wi := 〈θi, X〉, and define the matrix Σ by σij = 〈θi, θj 〉. Then if
g ∈ C3(Rk) and Z is a standard Gaussian random vector in R

k,

∣∣Eg(W ) − Eg(Σ1/2Z)
∣∣

≤
√

kM2(g)
4

[∥∥Σ∥∥
HS

(
2
√

E(X2
1 − 1)(X2

2 − 1) +

√(
1
n

+ |EX1X2|
)

|EX1X2|
)

+

√(
1
n

+ |EX1X2|
)∑

i

‖θi‖2
4 +

38k

n
EX4

1

]

+ 4
√

kM3(g)E|X1|3
k∑

i=1

‖θi‖3
3.

(23)

Remarks.

1. The appearance of the term
∑k

i=1 ‖θi‖3
3 (or something similar) is expected;

see, e.g., [19],[20],[15]. The typical behavior (in a measure theoretic sense) for
θ ∈ S

n−1 is that ‖θ‖3
3 is of order 1√

n
. However, if θ is a standard basis vector

then ‖θ‖3
3 = 1, thus the error bound is not small in this case, nor should it

be as this corresponds to simply truncating the random vector X.
2. The term

∑k
i=1 ‖θi‖2

4 could simply be estimated by k; however, for typical
choices of the θi, the bound will be of order k√

n
.

3. If the θi are orthonormal, then Σ = Ik and so the second half of Theorem 3
can be applied. In this case, the bound (23) may be replaced with

∣∣Eg(W ) − Eg(Z)
∣∣

≤ 1
2
M1(g)

[
√

k

(
2
√

E(X2
1 − 1)(X2

2 − 1) +

√(
1
n

+ |EX1X2|
)

|EX1X2|
)

+

√(
1
n

+ |EX1X2|
)∑

i

‖θi‖2
4 +

38k

n
EX4

1

]

+
4

√
2πkM2(g)E|X1|3

3

k∑
i=1

‖θi‖3
3.

(24)
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4. In the case that X is drawn uniformly from a suitably translated and rescaled
simplex, expressions for the moments appearing in the bound (23) are avail-
able (see [19]). Making use of these expressions shows that there are absolute
constants c, c′ such that

∣∣Eg(W ) − Eg(Σ1/2Z)
∣∣ ≤ c

√
k

n
M2(g)

[
‖Σ

∥∥
HS

+
k∑

i=1

‖θi‖2
4

]
(25)

+ c′ √
kM3(g)

k∑
i=1

‖θi‖3
3.

3.2. Runs on the line

The following example was treated by Reinert and Röllin [23] as an example of the
embedding method. It should be emphasized that showing that the number of d-runs
on the line is asymptotically Gaussian seems infeasible with Stein’s original method
of exchangeable pairs because of the failure of condition (1) from the introduction,
but in [23], the random variable of interest is embedded in a random vector whose
components can be shown to be jointly Gaussian by making use of the more general
condition (5) of the introduction. The example is reworked here making use of the
analysis of [23] together with Theorem 3, yielding an improved rate of convergence.

Let X1, . . . , Xn be independent {0, 1}-valued random variables, with P(Xi =
1) = p and P(Xi = 0) = 1 − p. For d ≥ 1, define the (centered) number of d-runs as

Vd :=
n∑

m=1

(XmXm+1 · · · Xm+d−1 − pd),

assuming the torus convention, namely that Xn+k = Xk for any k. For this example,
we assume that d < n

2 . To make an exchangeable pair, d − 1 sequential elements
of X := (X1, . . . , Xn) are resampled. That is, let I be a uniformly distributed
element of {1, . . . , n} and let X ′

1, . . . , X
′
n be independent copies of the Xi. Let X ′

be constructed from X by replacing XI , . . . , XI+d−2 with X ′
I , . . . , X

′
I+d−2. Then

(X, X ′) is an exhangeable pair, and, defining V ′
i := Vi(X) for i ≥ 1, it is easy to

see that

V ′
i − Vi = −

I+d−2∑
m=I−i+1

Xm · · · Xm+i−1 +
I+d−2∑

m=I+d−i

X ′
m · · · X ′

I+d−2XI+d−1 · · · Xm+i−1

+
I+d−i−1∑

m=I

X ′
m · · · X ′

m+i−1 +
I−1∑

m=I−i+1

Xm · · · XI−1X
′
I · · · X ′

m+i−1,

(26)

where sums
∑b

a are taken to be zero if a > b. It follows that

E
[
V ′

i − Vi

∣∣X]
= − 1

n

[
(d + i − 2)Vi − 2

i−1∑
k=1

pi−kVk

]
.
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Standard calculations show that, for 1 ≤ j ≤ i ≤ d,

E
[
ViVj

]
= n

[
(i − j + 1)pi + 2

j−1∑
k=1

pi+j−k − (i + j − 1)pi+j

]

= npi(1 − p)
j−1∑
k=0

(i − j + 1 + 2k)pk.

(27)

In particular, it follows from this expression that npi(1 − p) ≤ EV 2
i ≤ npi(1 − p)i2,

suggesting the renormalized random variables

(28) Wi :=
Vi√

npi(1 − p)
.

It then follows from (27) that, for 1 ≤ i, j ≤ d,

(29) σij := E
[
WiWj

]
= p

|i−j|
2

i∧j−1∑
k=0

(|i − j| + 1 + 2k)pk,

and from (26) that if W := (W1, . . . , Wd), then E
[
W ′ − W

∣∣X]
= ΛW, where

Λ =
1
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d − 1
−2p

1
2 d 0

...
. . .

−2p
k−1
2 · · · −2p

1
2 d + k − 2

...
. . .

−2p
d−1
2 · · · −2p

1
2 2(d − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Condition (1) of Theorem 3 thus applies with E = 0 and Λ as above.
To apply Theorem 3, an estimate on ‖Λ−1‖op is needed. Following Reinert and

Röllin, we make use of known estimates of condition numbers for triangular matrices
(see, e.g., the survey of Higham [10]). First, write Λ =: ΛEΛD, where ΛD is diagonal
with the same diagonal entries as Λ and ΛE is lower triangular with diagonal entries
equal to one and (ΛE)ij = Λij

Λjj
for i > j. Note that all non-diagonal entries of ΛE

are bounded in absolute value by 2
√

p

d−1 . From Lemeire [16], this implies the bounds

‖Λ−1
E ‖1 ≤

(
1 +

2
√

p

d − 1

)d−1

and ‖Λ−1
E ‖ ∞ ≤

(
1 +

2
√

p

d − 1

)d−1

.

From Higham, ‖Λ−1
E ‖op ≤

√
‖Λ−1

E ‖1‖Λ−1
E ‖ ∞, thus

‖Λ−1
E ‖op ≤

(
1 +

2
√

p

d − 1

)d−1

.

Trivially, ‖Λ−1
D ‖op = n

d−1 , and thus

(30) ‖Λ−1‖op ≤ n

d − 1

(
1 +

2
√

p

d − 1

)d−1

≤ ne2
√

p

d − 1
≤ 15n

d
.
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Now observe that, if condition (1) of Theorem 3 is satisfied with E = 0, then it
follows that E[(W ′ − W )(W ′ − W )T ] = 2ΛΣ, and thus we may take

E′ := E
[
(W ′ − W )(W ′ − W )T − 2ΛΣ

∣∣W ]
.

It follows that

E‖E′ ‖H.S. ≤
√∑

i,j

E(E′
ij)2 =

√∑
i,j

Var
(
E
[
(W ′

i − Wi)(W ′
j − Wj)

∣∣W ])
.

It was determined by Reinert and Röllin that

Var
(
E
[
(W ′

i − Wi)(W ′
j − Wj)

∣∣W ])
≤ 96d5

n3p2d(1 − p)2
,

thus

E‖E′ ‖H.S. ≤ 4
√

6d7/2

n3/2pd(1 − p)
.

Finally, note that

E|W ′ − W |3 ≤
√

d

d∑
i=1

E
∣∣W ′

i − Wi

∣∣3.
Reinert and Röllin showed that

E
∣∣(W ′

i − Wi)(W ′
j − Wj)(W ′

k − Wk)
∣∣ ≤ 8d3

n3/2p3d/2(1 − p)3/2

for all i, j, k, thus

E|W ′ − W |3 ≤ 8d9/2

n3/2p3d/2(1 − p)3/2
.

Using these bounds in inequality (13) from Theorem 3 yields the following.

Theorem 6. For W = (W1, . . . , Wd) defined as in (28) with d < n
2 , Σ = [σij ]di,j=1

given by (29), and h ∈ C3(Rd),

(31)
∣∣Eh(W ) − Eh(Σ1/2Z)

∣∣ ≤
[

15
√

6d3M2(h)
pd(1 − p)

√
n

+
40d7/2M3(h)

3p3d/2(1 − p)3/2
√

n

]
,

where Z is a standard d-dimensional Gaussian random vector.

Remarks. Compare this result to that obtained in [23]:

(32)
∣∣Eh(W ) − Eh(Σ1/2Z)

∣∣ ≤ 37d7/2|h|2
pd(1 − p)

√
n

+
10d5|h|3

p3d/2(1 − p)3/2
√

n
,

where |h|2 = supi,j ‖ ∂2h
∂xi∂xj

‖ ∞ and |h|3 = supi,j,k ‖ ∂3h
∂xi∂xj∂xk

‖ ∞.
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3.3. Eigenfunctions of the Laplacian

Consider a compact Riemannian manifold M with metric g. Integration with re-
spect to the normalized volume measure is denoted dvol, thus

∫
M

1dvol = 1. For
coordinates { ∂

∂xi
}n

i=1 on M , define

(G(x))ij = gij(x) =
〈

∂

∂xi

∣∣∣∣
x

,
∂

∂xj

∣∣∣∣
x

〉
, g(x) = det(G(x)),

gij(x) = (G−1(x))ij .

Define the gradient ∇f of f : M → R and the Laplacian Δgf of f by

∇f(x) =
∑
j,k

∂f

∂xj
gjk ∂

∂xk
, Δgf(x) =

1
√

g

∑
j,k

∂

∂xj

(
√

ggjk ∂f

∂xk

)
.

The function f : M → R is an eigenfunction of Δ with eigenvalue −μ if Δf(x) =
−μf(x) for all x ∈ M ; it is known (see, e.g., [4]) that on a compact Riemannian
manifold M , the eigenvalues of Δ form a sequence 0 ≥ −μ1 ≥ −μ2 ≥ · · · ↘ −∞.
Eigenspaces associated to different eigenvalues are orthogonal in L2(M) and all
eigenfunctions of Δ are elements of C∞(M).

Let X be a uniformly distributed random point of M . The value distribution
of a function f on M is the distribution (on R) of the random variable f(X).
In [17], a general bound was given for the total variation distance between the
value distribution of an eigenfunction and a Gaussian distribution, in terms of
the eigenvalue and the gradient of f . The proof made use of a univariate version
of Theorem 4. Essentially the same analysis is used here to prove a multivariate
version of that theorem.

Let f1, . . . , fk be a sequence of orthonormal (in L2) eigenfunctions of Δ with
corresponding eigenvalues −μi (some of the μi may be the same if the eigenspaces
of M have dimension greater than 1). Define the random vector W ∈ R

k by Wi :=
fi(X). We will apply Theorem 4 to show that W is approximately distributed as a
standard Gaussian random vector (i.e., Σ = Ik).

For ε > 0, an exchangeable pair (W, Wε) is constructed from W as follows. Given
X, choose an element V ∈ SXM (the unit sphere of the tangent space to M at
X) according to the uniform measure on SXM , and let Xε = expX(εV ). That is,
pick a direction at random, and move a distance ε from X along a geodesic in that
direction. It was shown in [17] that this construction produces an exchangeable pair
of random points of M ; it follows that if Wε := (f1(Xε), . . . , fk(Xε)), then (W, Wε)
is an exchangeable pair of random vectors in R

k.
In order to identify Λ, E and E′ so as to apply Theorem 4, first let γ : [0, ε] → M

be a constant-speed geodesic such that γ(0) = X, γ(ε) = Xε, and γ′(0) = V . Then
applying Taylor’s theorem on R to the function fi ◦ γ yields

fi(Xε) − fi(X) = ε · d(fi ◦ γ)
dt

∣∣∣∣
t=0

+
ε2

2
· d2(fi ◦ γ)

dt2

∣∣∣∣
t=0

+ O(ε3)

= ε · dXfi(V ) +
ε2

2
· d2(fi ◦ γ)

dt2

∣∣∣∣
t=0

+ O(ε3),
(33)

where the coefficient implicit in the O(ε3) depends on fi and γ and dxfi denotes
the differential of fi at x. Recall that dxfi(v) = 〈 ∇fi(x), v〉 for v ∈ TxM and the
gradient ∇fi(x) defined as above. Now, for X fixed, V is distributed according to
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normalized Lebesgue measure on SXM and dXfi is a linear functional on TXM . It
follows that

E
[
dXfi(V )

∣∣X]
= E

[
dXfi(−V )

∣∣X]
= −E

[
dXfi(V )

∣∣X]
,

thus E[dXfi(V )|X] = 0. This implies that

lim
ε→0

1
ε2

E
[
fi(Xε) − fi(X)

∣∣X]
exists and is finite; we will take s(ε) = ε2. Indeed, it is well-known (see, e.g.,
Theorem 11.12 of [9]) that

(34) lim
ε→0

1
ε2

E
[
fi(Xε) − fi(X)

∣∣X]
=

1
2n

Δgfi(X) =
−μi

2n
fi(X)

for n = dim(M). It follows that Λ = 1
2n diag(μ1, . . . , μk) and E′ = 0. The expression

E[Wε − W |W ] satisfies the L1 convergence requirement of Theorem 4, since the
fi are necessarily smooth and M is compact. Furthermore, it is immediate that
‖Λ−1‖op = 2nmax1≤i≤k( 1

μi
).

For the second condition of Theorem 4, it is necessary to determine

lim
ε→0

1
ε2

E
[
(Wε − W )i(Wε − W )j

∣∣X]
= lim

ε→0

1
ε2

E
[
(fi(Xε) − fi(X))(fj(Xε) − fj(X))

∣∣X]
.

By the expansion (33),

E
[
(fi(Xε) − fi(X))(fj(Xε) − fj(X))

∣∣X]
= ε2E

[
(dXfi(V ))(dXfj(V ))

∣∣X]
+ O(ε3).

Choose coordinates { ∂
∂xi

}n
i=1 in a neighborhood of X which are orthonormal at X.

Then
∇f(X) =

∑
i

∂f

∂xi

∂

∂xi
,

for any function f ∈ C1(M), thus

(dxfi(v)) · (dxfj(v)) = 〈∇fi, v〉 〈 ∇fj , v〉

=
n∑

r=1

∂fi

∂xr
(x)

∂fj

∂xr
(x)v2

r +
∑
r �=s

∂fi

∂xr
(x)

∂fj

∂xs
(x)vrvs.

Since V is uniformly distributed on a Euclidean sphere, E[VrVs] = 1
nδrs. Making

use of this fact yields

lim
ε→0

1
ε2

E
[
(dXfi(V ))(dXfj(V ))

∣∣X]
=

1
n

〈 ∇fi(X), ∇fj(X)〉 ,

thus condition (2) is satisfied with

E′ =
1
n

[
〈∇fi(X), ∇fj(X)〉

]k

i,j=1
− 2Λ.

(As before, the convergence requirement is satisfied since the fi are smooth and M
is compact.)

By Stokes’ theorem,

E 〈 ∇fi(X), ∇fj(X)〉 = −E
[
fi(X)Δgfj(X)

]
= μjE

[
fi(X)fj(X)

]
= μiδij ,
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thus

E‖E′ ‖H.S. =
1
n

E

√√√√ k∑
i,j=1

[
〈∇fi(X), ∇fj(X)〉 − E 〈 ∇fi(X), ∇fj(X)〉

]
Finally, (33) gives immediately that

E
[

|Wε − W |3
∣∣W ]

= O(ε3),

(where the implicit constants depend on the fi and on k), thus condition (3) of
Theorem 4 is satisfied.

All together, we have proved the following.

Theorem 7. Let M be a compact Riemannian manifold and f1, . . . , fk an ortho-
normal (in L2(M)) sequence of eigenfunctions of the Laplacian on M , with cor-
responding eigenvalues −μi. Let X be a uniformly distributed random point of M .
Then if W := (f1(X), . . . , fk(X)),

dW (W, Z) ≤
[

max
1≤i≤k

(
1
μi

)]
E

√√√√ k∑
i,j=1

[
〈 ∇fi(X), ∇fj(X)〉 − E 〈 ∇fi(X), ∇fj(X)〉

]
.

Example: The torus.
In this example, Theorem 7 is applied to the value distributions of eigenfunctions

on flat tori. The class of functions considered here are random functions; that is,
they are linear combinations of eigenfunctions with random coefficients.

Let (M, g) be the torus T
n = R

n/Z
n, with the metric given by the symmetric

positive-definite bilinear form B:

(x, y)B = 〈Bx, y〉 .

With this metric, the Laplacian ΔB on T
n is given by

ΔBf(x) =
∑
j,k

(B−1)jk
∂2f

∂xj∂xk
(x).

Eigenfunctions of ΔB are given by the real and imaginary parts of functions of the
form

fv(x) = e2πi〈v,x〉B = e2πi〈Bv,x〉,

for vectors v ∈ R
n such that Bv has integer components, with corresponding eigen-

value −μv = −(2π‖v‖B)2.
Consider a collection of k random eigenfunctions {fj }k

j=1 of ΔB on the torus
which are linear combinations of eigenfunctions with random coefficients:

fj(x) := �

⎛⎝∑
v∈Vj

ave2πi〈Bv,x〉

⎞⎠ ,

where Vj is a finite collection of vectors v such that Bv has integer components
and 〈v, Bv〉 = μj

(2π)2 for each v ∈ Vj , and {{av }v∈Vj : 1 ≤ j ≤ k} are k independent

random vectors (indexed by j) on the spheres of radius
√

2 in R
|Vj |. Assume that
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v + w �= 0 for v ∈ Vr and w ∈ Vs (r and s may be equal) and that Vr ∩ Vs = ∅ for
r �= s; it follows easily that the fj are orthonormal in L2(Tn).

To apply Theorem 7, first note that

∇Bfr(x) =

⎧⎨⎩�

⎛⎝ n∑
j=1

∑
v∈Vr

(2πi)av(Bv)j(B−1)j�e
2πi〈Bv,x〉

⎞⎠⎫⎬⎭
n

�=1

= −�
(∑

v∈Vr

(2π)ave2πi〈Bv,x〉v

)
,

using the fact that B is symmetric.
It follows that

〈∇Bfr(x), ∇Bfs(x)〉B

=
n∑

j,�=1

Bj��
(∑

v∈Vr

(2π)ave2πi〈Bv,x〉vj

)
�
(∑

w∈Vs

(2π)awe2πi〈Bw,x〉w�

)

=
1
2

�

⎡⎢⎢⎣ ∑
v∈Vr
w∈Vs

4π2avaw 〈v, w〉B

(
e2πi〈Bv−Bw,x〉 − e2πi〈Bv+Bw,x〉

)⎤⎥⎥⎦ .

(35)

Let X be a randomly distributed point on the torus. Let Ea denote averaging over
the coefficients av and EX denote averaging over the random point X. To estimate
EadW (W, Z) from Theorem 7, first apply the Cauchy-Schwartz inequality and then
change the order of integration:

EaEX

√√√√ k∑
i,j=1

[
〈 ∇fi(X), ∇fj(X)〉B − EX 〈 ∇fi(X), ∇fj(X)〉B

]

≤

√√√√ k∑
i,j=1

EXEa

[
〈∇fi(X), ∇fj(X)〉B − EX 〈 ∇fi(X), ∇fj(X)〉B

]2
.

Start by computing EXEa〈∇Bfr(X), ∇Bfs(X)〉2
B . From above,

〈∇Bfr(x), ∇Bfs(X)〉2
B

= 2π4�
[ ∑

v,v′ ∈Vr

w,w′ ∈Vs

avawav′ aw′ 〈v, w〉B 〈v′, w′ 〉B

[
e2πi〈Bv−Bw−Bv′+Bw′,x〉 − e2πi〈Bv−Bw−Bv′ −Bw′,x〉

+ e2πi〈Bv−Bw+Bv′ −Bw′,x〉 − e2πi〈Bv−Bw+Bv′+Bw′,x〉

− e2πi〈Bv+Bw−Bv′+Bw′,x〉 + e2πi〈Bv+Bw−Bv′ −Bw′,x〉

− e2πi〈Bv+Bw+Bv′ −Bw′,x〉 + e2πi〈Bv+Bw+Bv′+Bw′,x〉
]]

.

Averaging over the coefficients {av } using standard techniques (see Folland [7] for
general formulae and [17] for a detailed explanation of the univariate version of this
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result), and then over the random point X ∈ T
n, it is not hard to show that

EXEa‖∇Bfr(X)‖4
B

=
8π4

| Vr |(| Vr | + 2)

⎡⎣3
∑
v∈Vr

‖v‖4
B + 2

(∑
v∈Vr

‖v‖2
B

)2

+ 4
∑

v,w∈Vr

〈v, w〉2
B

⎤⎦ ,

and

EXEa 〈∇Bfr(X), ∇Bfs(X)〉2
B =

4π4

| Vr | | Vs|
∑
v∈Vr
w∈Vs

〈v, w〉2
B .

Now,

Ea

[
EX ‖∇Bfr(X)‖2

B

]2
= Ea

[
2π2

∑
v∈Vr

a2
v ‖v‖2

B

]2

=
(2π)4

| Vr |(| Vr | + 2)

⎡⎣(∑
v∈Vr

‖v‖2
B

)2

+ 2
∑
v∈Vr

‖v‖4
B

⎤⎦ ,

and
EX 〈∇Bfr(X), ∇Bfs(X)〉B = 0

for r �= s. It follows that

EXEa‖∇Bfr(X)‖4
B − Ea

(
EX ‖ ∇Bfr(X)‖2

B

)2 ≤ 2(2π)4

| Vr |(| Vr | + 2)

∑
v,w∈Vr

〈v, w〉2
B ,

and, applying Theorem 7, we have shown that

Theorem 8. Let the random orthonormal set of functions {fr }k
r=1 be defined on

T
n as above, and let the random vector W be defined by Wi := fi(X) for X a

random point of T
n. Then

EadW (W, Z) ≤ 4π2

minr μr

√√√√√√√ k∑
r,s=1

⎛⎜⎜⎝ 2
| Vr | | Vs|

∑
v∈Vr
w∈Vs

〈v, w〉2
B

⎞⎟⎟⎠.

Remarks. Note that if the elements of ∪k
r=1Vr are mutually orthogonal, then the

right-hand side becomes

4π4

minr μr

√√√√ k∑
r=1

2μr

| Vr |2 ,

thus if it is possible to choose the Vr such that their sizes are large for large n, and
the range of the μr is not too big, the error is small. One can thus find vectors of
orthonormal eigenfunctions of T

n which are jointly Gaussian (and independent) in
the limit as the dimension tends to infinity, if the matrix B is such that there are
large collections of vectors v which are “close to orthogonal” and have the same
lengths with respect to 〈·, · 〉B and with the vectors Bv having integer components. It
is possible to extend the analysis here, in a fairly straightfoward manner, to require
rather less of the matrix B (essentially all the conditions here can be allowed to
hold only approximately), but for simplicity’s sake, we include only this most basic
version here. The univariate version of this relaxing of conditions is carried out in
detail in [17].



Multivariate normal approximation 177

Acknowledgements

The author thanks M. Meckes for many useful discussions.

References
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