CASE.EDU:    HOME | DIRECTORIES | SEARCH
case western reserve university

Page Expired

 

The page you are attempting to view may be out-of-date.

The page in question has not been verified by its author in quite some time.

If the information provided on the page is time sensitive, it is possible that it is no longer accurate. To ensure that you receive the most current information, we recommend you contact the page's author. He or she can verify whether the information is correct and/or direct you to a more up-to-date page.

Continue to the requested page.

e (SEI), determines to a large extent how efficient the battery can be over many charge/discharge cycles.

At this point, no chemist or battery manufacturer knows the best and safest electrolyte for a high-energy, high-power, rechargeable lithium-ion battery—especially a larger-format battery that would power an electric car. Moreover, because of the sheer number of combinations of potential salts and solvents and the lack of fundamental knowledge about them, it is impossible to predict what the recipe for an optimal battery electrolyte might be.

Enter Scherson and his team, whose distinctive research approach won them the OTF award.

Lucky Accidents

"Many wonderful inventions we use today were discovered by sheer accident," Scherson observes. "So, in our battery research, why can't we deliberately create the right conditions for a lucky accident?"

To this end, Scherson and his team will borrow a technique widely used in biomedical applications and research on catalysts. Scherson calls it a combinatorial approach and says, “It will allow us to test 10,000 different combinations of solvents and salts in just a few months."

Part of the OTF grant will fund the custom-building of a 10-by-10 array of 100 “cells,” each of which is essentially a small lithium-ion battery. A computer will control syringe-like injectors that will deliver precisely measured amounts of a single solvent and a single lithium salt into each cell. Then, over the next 24 hours, the computer will automatically monitor the behavior of each cell over many charge/discharge cycles. Every 24 hours, all the cells will be flushed and new combinations of solvent and salt will be injected for testing.

"Yes, in a way, it's a fishing expedition," Scherson laughs. "We're dropping lines all over the lake to discover the best spots to fish. We're prospecting!" But with such a systematic and automated empirical approach, the team expects to take less than six months to identify the combinations of solvents and salts that deliver the highest power. They will also take a similar approach to identifying additives that reduce flammability and to studying the chemistry of the SEI.

Novolyte Technologies, based in Independence, Ohio, will provide the chemicals for this research. Novolyte "has the highest-purity salts and solvents of any company in the world," Scherson declares. "They produce 95 percent of the electrolyte formulations for lithium and lithium-ion batteries in the Western world. It was a marriage made in heaven.” Along with its U.S.- and Asia-based manufacturing platforms and global supply relationships with lithium-ion battery manufacturers, Novolyte provides an established channel to commercialize the innovative products born from the OTF-funded research.


John Protasiewicz, professor and associate chair of chemistry, is collaborating with Scherson on the Ohio Third Frontier project. He leads a research group devoted to the construction of novel materials and has received an unbroken string of National Science Foundation grants since 1997, including an NSF CAREER Award and an award for special creativity.
Photo: Daniel Milner

"We are looking forward to working with such a well-known institution of higher learning, and with Dr. Scherson, whose expertise is world renowned in the field of electrochemistry," says Dr. Martin Payne, Novolyte's global technology manager. "The partnership also allows us to accelerate our own program for battery development and commercialization." Ultimately, Payne hopes that the team’s discoveries will help generate high-tech energy jobs in Ohio—the sorts of jobs that might appeal to future Case Western Reserve graduates.

By the conclusion of the OTF grant, Novolyte’s goal is to offer commercial quantities (metric tons) of the newly discovered electrolytes for sale to battery manufacturers. Those firms will use them to build and test prototype lithium-ion batteries suitable for powering electric vehicles.

Scherson acknowledges that converting to plug-in electric cars wouldn’t necessarily reduce overall emissions of carbon and other pollutants. But it would offer one significant advantage: "Pollution and emissions would be localized to individual electric power plants rather than spread all over the nation—and pollution and emissions from one place are far easier to capture and mitigate than generalized sources are." For this reason, Scherson says, "Going to electric vehicles would be a huge service to society."

Science journalist Trudy E. Bell is a Presidential Fellow in the SAGES program, leading the seminar "Political Hype vs. Science Fact: Evidence, Risk, Preferences, Values and 'Spin.'"